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Abstract

One of the ultimate goals of computer vision is to extract useful information from visual

inputs. An example is to recognize and segment objects from natural images. Recently,

deep networks enable us to do a wide range of these tasks better than ever. These are mostly

achieved with convolutional neural networks that model pixel relations within a small

convolution kernel. Despite such success of convolution, the local window approximation

makes it challenging to capture long-range relations. This limitation results in problems,

such as unsatisfactory generalization and robustness to out-of-distribution examples.

In this dissertation, I aim to model long-range dependencies in the context of natural

image perception. The first part of the dissertation is focused on designing neural archi-

tectures that are flexible enough to capture long-range relations. We start by improving

convolutional networks with dynamic scaling policies. Then, we explore an alternative

solution that completely replaces convolution with global self-attention to capture more

context. The attention mechanism is further extended to modeling relations between the

pixels and the objects with a transformer, enabling panoptic segmentation in an end-to-end

manner. These flexible long-range models usually require a large amount of labeled data

to train. In order to address this issue, we discuss self-supervised techniques that learn

representation effectively without human annotation in the second part of the dissertation.

We regularize the contrastive learning framework with a consistency term that refines self-

supervision signals. We also study a more general pretext task, masked image modeling,

and train transformers to learn better representations with an online semantic tokenizer.
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Chapter 1

Introduction

Computer vision seeks to extract useful information from visual input signal which is

usually high dimensional and consists of hundreds of thousands of pixels in a 2D natural

image. Extracting information from such input requires modeling relations of the input

pixels rather than treating them independently as a bag of intensities. Convolution has

been used to capture such relations since gradient operators were applied to images in the

1960s. In these early days of computer vision, convolution was usually adopted to extract

local relations such as edges with image gradient kernels. In order to model more context

in a larger window, one could simply increase the size of the convolution kernel or the

template, but the number of templates needed grows dramatically with respect to the size

of the window, due to the large variations in natural images. It is infeasible to enumerate

all the patterns or even all the images with large templates. Another approach is to stack a

hierarchy of local convolutions (Figure 1.1), as is done in almost all of recent convolutional

neural networks. However, such mechanism usually ignores the long-range dependencies

between two parts, such as the appearance consistencies between the parts, leading to

unsatisfactory performance and robustness to out-of-distribution examples.

In this dissertation, I aim to enable neural networks to capture long-range dependencies

in the context of 2D image perception. As illustrated in Figure 1.2, this dissertation

consists of two parts. In Part I, I will present our efforts at designing long-range modeling
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Figure 1.1. A typical CNN performs convolution in a hierarchical manner. The low-level

filters detect part-like patterns (the red boxes) independently. The high-level convolution,

operating on a small resolution, applies a high-level template matching and combines the

part patterns into a possible giant (the blue box).

Part I:
Long-Range Model 

Architectures

Part II: 
Self-Supervised

Pre-Training

Image

Supervised Training
with Labels

Figure 1.2. The focus of this dissertation in a typical visual learning pipeline. Part I

discusses neural architectures proposed for long-range dependency modeling and Part II

presents self-supervised learning methods that train the models to capture long-range

dependencies without human annotation.
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architectures with and without convolution. These architectures are more flexible than

typical CNNs and thus may require more labeled data to train. In order to address this

issue and prevent overfitting of such models, in Part II, I will discuss our self-supervised

pre-training methods that learn long-range dependencies from image data without human

annotation. The proposed model architectures and training methods in the two parts

will be evaluated on supervised learning tasks such as image classification and image

segmentation.

1.1 Neural Architectures of Long-Range Models

Part I of this dissertation is focused on relaxing the local constraint imposed on convolu-

tional models.

In Chapter 2, we will try to address the long-range modeling issue within the common

convolutional neural network framework. Most previous solutions to this issue have a

similar theme: a set of intuitive and manually designed policies that are generic and fixed

(e.g. SIFT or feature pyramid). We argue that the scaling policy should be learned from data.

In this chapter, we introduce ELASTIC, a simple, efficient and yet very effective approach

to learn a dynamic scale policy from data. We formulate the scaling policy as a non-linear

function inside the network’s structure that (a) is learned from data, (b) is instance specific,

(c) does not add extra computation, and (d) can be applied on any network architecture. We

applied ELASTIC to several state-of-the-art network architectures and showed consistent

improvement without extra computation on classification and segmentation tasks. The

results show major improvement for images with scale challenges.

In Chapter 3, we will go beyond fully convolutional framework and explore the pos-

sibility of adopting self-attention mechanisms in all the layers of a neural network. The

vanilla self-attention operation is able to model non-local interactions, but is also extremely

expensive to compute on large images, limiting its usage as a stand-alone operator for a
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neural network. In this chapter, we attempt to remove the complexity constraint by factor-

izing 2D self-attention into two 1D self-attentions. This reduces computation complexity

and allows performing attention within a larger or even global region. In companion,

we also propose a position-sensitive self-attention design. Combining both yields our

position-sensitive axial-attention layer, a novel building block that one could stack to form

axial-attention models for image classification and dense prediction. We will demonstrate

the effectiveness of the model on four large-scale datasets.

In Chapter 4, the attention mechanism is extended from the pixel space to the object

mask space. The pixel-to-mask transformer allows direct communication and relation

prediction between all pixels and all masks. When the mask transformer is trained with

a panoptic segmentation loss function, it is able to predict class-labeled masks directly,

enabling end-to-end panoptic segmentation for the first time. This approach simplifies

the previous pipeline that depends heavily on surrogate sub-tasks and hand-designed

components, such as box detection, non-maximum suppression, thing-stuff merging, etc.

As a result, our mask transformer closes the gap between box-based and box-free methods

for the first time on the challenging COCO dataset by improving a significant 7.1% PQ in

the box-free regime.

1.2 Self-Supervised Pre-Training of Long-Range Models

Part II of this dissertation discusses training techniques that can be used to extract long-

range relations from data without human annotations.

In Chapter 5, we study contrastive learning methods that perform an instance discrim-

ination task: Given a query image crop, label crops from the same image as positives,

and crops from other randomly sampled images as negatives. An important limitation

of this label assignment is that it can not reflect the heterogeneous similarity of the query

crop to crops from other images, but regarding them as equally negative. To address this
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issue, inspired by consistency regularization in semi-supervised learning, we propose

a consistency term in unsupervised contrastive learning framework. The consistency

term takes the similarity of the query crop to crops from other images as “unlabeled”,

and the corresponding similarity of a positive crop as a pseudo label. It then encourages

consistency between these two similarities and learns better visual representations for

downstream tasks as a result.

In Chapter 6, we study masked image modeling as a more promising pretext task for

long-range models, or more specifically, for transformers. Taking inspiration from the

successful masked language modeling [6], where texts are first tokenized into semantically

meaningful pieces, we show the necessity and challenges of adopting a semantically

meaningful visual tokenizer. We present a self-supervised framework that can perform

masked prediction with an online tokenizer. Specifically, we perform self-distillation on

masked patch tokens and take the teacher network as the online tokenizer, along with

self-distillation on the class token to acquire visual semantics. The online tokenizer is

jointly learnable with the MIM objective and dispenses with a multi-stage training pipeline

where the tokenizer needs to be pre-trained beforehand. When transformers are trained

in this way, they learn more generalizable representations measured by linear probing,

fine-tuning, transfer learning, and robustness to out-of-distribution examples.

1.3 Relevant Publications

[1] Huiyu Wang, Aniruddha Kembhavi, Ali Farhadi, Alan Yuille, and Mohammad Rastegari,

“ELASTIC: Improving cnns with dynamic scaling policies,” in CVPR, 2019.

[2] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, and Liang-Chieh

Chen, “Axial-DeepLab: Stand-alone axial-attention for panoptic segmentation,” in ECCV,

2020.

[3] Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen, “MaX-

DeepLab: End-to-end panoptic segmentation with mask transformers,” in CVPR, 2021.

5



[4] Chen Wei, Huiyu Wang, Wei Shen, and Alan Yuille, “CO2: Consistent contrast for unsuper-

vised visual representation learning,” in ICLR, 2021.

[5] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong,

“iBOT: Image BERT pre-training with online tokenizer,” arXiv:2111.07832, 2021.
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Chapter 2

ELASTIC: Improving CNNs with
Dynamic Scaling Policies

This chapter aims to improve CNNs by introducing more context in each layer.

2.1 Introduction

Scale variation has been one of the main challenges in computer vision. There is a rich

literature on different approaches to encoding scale variations in computer vision algo-

rithms [7]. In feature engineering, there have been manually prescribed solutions that

offer scale robustness. For example, the idea of searching for scale first and then extracting

features based on a known scale used in SIFT or the idea of using feature pyramids are

examples of these prescribed solutions. Some of these ideas have also been migrated to

feature learning using deep learning in modern recognition solutions.

The majority of the solutions in old-school and even modern approaches to encode

scale are manually designed and fixed solutions. For example, most state-of-the-art image

classification networks [8]–[13] use the feature pyramid policy where a network looks at

the larger resolution first and then goes to smaller ones as it proceeds through the layers.

Despite the fact that this common practice seems to be a natural and intuitive choice, we

argue that this scale policy is not necessarily the best one for all possible scale variations

8



ResNeXt.50

ResNeXt.50
+ Elastic

Category cock pop bottlegolf ball candlehoneycombcrutch

Top 1

Top 1

Image

X L M S

Figure 2.1. Dynamic scale policy. Scaling policies in CNNs are typically integrated into

the network architecture manually in a pyramidal fashion. The color bar in this figure

(second row) shows the scales at different blocks of the ResNext50 architecture. The early

layers receive eXtra-large resolutions and in the following layers resolutions decrease as

Large, Medium, and Small. We argue that scaling policies in CNNs should be instance-

specific. Our Elastic model (the third row) allows different scaling policies for different

input images and it learns from the training data how to pick the best policy. For scale

challenging images e.g. images with lots of small(or diverse scale) objects, it is crucial

that network can adapt its scale policy based on the input. As it can be seen in this figure,

Elastic gives a better prediction for these scale challenging images. (See section 2.4.2 for

more details).
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in images. We claim that an ideal scale policy should (1) be learned from the data; (2) be

instance specific; (3) not add extra computational burden; and (4) be applicable to any

network architecture.

For example, instead of looking at the scales according to the feature pyramid policy

if we process the images in Figure 2.1 based on a learned and instance specific policy we

see an improved performance. In images with scale challenges like the golf ball image

in Figure 2.1 the learned scale policy might differ dramatically from a pyramid policy,

resulting in correct classification of that instance. The learned policy for this instance starts

from looking at the image from a large scale (dark blue color), and then goes immediately

to a smaller scale, and then goes back to a large scale followed by a small scale and so on.

In this chapter, we introduce ELASTIC, an approach to learn instance-specific and

not-necessarily-pyramidal scale policies with no extra(or lower) computational cost. Our

solution is simple, efficient, and very effective on a wide range of network architectures

for image classification and segmentation. Our Elastic model can be applied on any CNN

architectures simply by adding downsamplings and upsamplings in parallel branches

at each layer and let the network learn from data a scaling policy in which inputs being

processed at different resolutions in each layer. We named our model ELASTIC because

each layer in the network is flexible in terms of choosing the best scale by a soft policy.

Our experimental evaluations show improvements in image classification on Ima-

geNet[14], multi-label classification on MSCOCO[15], and semantic segmentation on

PASCAL VOC for ResNeXt[16], SE-ResNeXt[17], DenseNet[11], and Deep Layer Aggrega-

tion (DLA)[12] architectures. Furthermore, our results show major improvements (about

4%) on images with scale challenges (lots of small objects or large variation across scales

within the same image) and lower improvements for images without scale challenges. Our

qualitative analysis shows that images with similar scaling policies (over the layers of the

network) are sharing similar complexity pattern in terms of scales of the objects appearing

in the image.
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2.2 Related Work

The idea behind Elastic is conceptually simple and there are several approaches in the liter-

ature using similar concepts. Therefore, we study all the categories of related CNN models

and clarify the differences and similarities to our model. There are several approaches to

fusing information at different visual resolutions. The majority of them are classified into

four categories (depicted in Figure 2.2(b-e)).

Image pyramid. An input image is passed through a model multiple times at different

resolutions and predictions are made independently at all levels. The final output is

computed as an ensemble of outputs from all resolutions. This approach has been a

common practice in [18]–[20].

Loss pyramid. This method enforces multiple loss functions at different resolutions. [21]

uses this approach to improve the utilization of computing resources inside the network.

SSD [22] and MS-CNN [23] also use losses at multiple layers of the feature hierarchy.

Filter pyramid. Each layer is divided into multiple branches with different filter sizes

(typically referred to as the split-transform-merge architecture). The variation in filter

sizes results in capturing different scales but with additional parameters and operations.

The inception family of networks [21], [24], [25] use this approach. To further reduce

the complexity of the filter pyramid [26]–[28] use dilated convolutions to cover a larger

receptive field with the same number of FLOPs. In addition, [29] used 2 CNNs to deal

with high and low frequencies, and [30] proposed to adaptively choose from 2 CNNs with

different capacity.

Feature pyramid. This is the most common approach to incorporate multiple scales in

a CNN architecture. Features from different resolutions are fused in a network by either

concatenation or summation. Fully convolutional networks [31] add up the scores from

multiple scales to compute the final class score. Hypercolumns [32] use earlier layers in
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the network to capture low-level information and describe a pixel in a vector. Several

other approaches (HyperNet [33], ParseNet [34], and ION [35]) concatenate the outputs

from multiple layers to compute the final output. Several recent methods including

SharpMask [36] and U-Net [37] for segmentation, Stacked Hourglass networks [38] for

keypoint estimation and Recombinator networks [39] for face detection, have used skip

connections to incorporate low-level feature maps on multiple resolutions and semantic

levels. [40] extends DenseNet[11] to fuse features across different resolution blocks. Feature

pyramid networks (FPNs) [41] are designed to normalize resolution and equalize semantics

across the levels of a pyramidal feature resolution hierarchy through top-down and lateral

connections. Likewise, DLA [12] proposes an iterative and hierarchical deep aggregation

that fuses features from different resolutions.

Elastic resembles models from the Filter pyramid family as well as the Feature pyramid

family, in that it introduces parallel branches of computation (a la Filter pyramid) and also

fuses information from different scales (a la Feature pyramid). The major difference to the

feature pyramid models is that in Elastic every layer in the network considers information

at multiple scales uniquely whereas in feature pyramid the information for higher or

lower resolution is injected from the other layers. Elastic provides an exponential number

of scaling paths across the layers and yet keeps the computational complexity the same

(or even lower) as the base model. The major difference to the filter pyramid is that the

number of FLOPs to cover a higher receptive field in Elastic is proportionally lower, due

to the downsampling whereas in the filter pyramid the FLOPs is higher or the same as the

original convolution.

2.3 Model

In this section, we elaborate the structure of our proposed Elastic and illustrate standard

CNN architectures being augmented with our Elastic. We also contrast our model with
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Figure 2.2. Multi-scaling model structures. This figure illustrates different approaches to

multi-scaling in CNN models and our Elastic model. The solid-line rectangles show the

input size and the dashed-line rectangles shows the filter size.

other multi-scale approaches.

2.3.1 Scale Policy in CNN Blocks

Formally, a layer in a CNN can be expressed as

F (x) = σ
(︂ q

∑
i=1

Ti(x)
)︂

(2.1)

where q is the number of branches to be aggregated, Ti(x) can be an arbitrary function

(normally it is a combination of convolution, batch normalization and activation), and

σ are nonlinearities. A few F (x) are stacked into a stage to process information in one

spatial resolution. Stages with decreasing spatial resolutions are stacked to integrate a

pyramid scale policy in the network architecture. A network example of 3 stages with 2

layers in each stage is

N = F32 ◦ F31 ◦ Dr2 ◦ F22 ◦ F21 ◦ Dr1 ◦ F12 ◦ F11 (2.2)

where Dri indicates the resolution decrease by ratio ri > 1 after a few layers. Dri can be

simply implemented by increasing the stride in the convolution right after. For example,

ResNeXt[16] stacks bottleneck layers in each resolution and use convolution with stride

2 to reduce spatial resolution. This leads to a fixed scaling policy that enforces a linear
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relationship between number of layers and the effective receptive field of those layers.

Parameters of Ti(x) and the elements in input tenors x are all of the tangible ingredients

in a CNN that define computational capacity of the model. Under a fixed computational

capacity measured by FLOPs, to improve the accuracy of such a model, we can either

increase number of parameters in Ti(x) and decrease the resolution of x or increase the

resolution of x and decrease number of parameters in Ti(x). By adjusting the input

resolutions at each layer and number of parameters, we can define a scaling policy across

the network. We argue that finding the optimal scaling policy (a trade-off between the

resolution and number of parameters in each layer) is not trivial. There are several

model designs toward increasing the accuracy and manually injecting variations of feature

pyramid but most of them are at the cost of higher FLOPs and more parameters in the

network. In the next section, we explain our solution that can learn an optimal scaling

policy and maintain or reduce number of parameters and FLOPs while improving the

accuracy.

2.3.2 The ELASTIC Structure

In order to learn image features at different scales, we propose to add down-samplings

and up-samplings in parallel branches at each layer and let the network make decision

on adjusting its process toward various resolutions at each layer. Networks can learn this

policy from training data. We add down-samplings and up-samplings in parallel branches

at each layer and divide all the parameters across these branches as follows:

F (x) = σ
(︂ q

∑
i=1

Uri(Ti(Dri(x)))
)︂

(2.3)

N = F32 ◦ F31 ◦ F22 ◦ F21 ◦ F12 ◦ F11 (2.4)
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where Dri(x) and Uri(x) are respectively downsampling and upsampling functions which

change spatial resolutions of features in a layer. Unlike in equation 2.2, a few F are applied

sequentially without downsampling the main stream, and N (x) has exactly the same

resolution as original x.

Note that the learned scaling policy in this formulation will be instance-specific i.e.

for different image instances, the network may activate branches in different resolutions

at each layer. In section 2.4 we show that this instance-specific scaling policy improves

prediction on images with scale challenges e.g. images consist of lots of small objects or

highly diverse object sizes.

Conceptually, we propose a new structure where information is always kept at a high

spatial resolution, and each layer or branch processes information at a lower or equal

resolution. In this way we decouple feature processing resolution (Ti processes information

at different resolutions) from feature storage resolution (the main stream resolution of the

network). This encourages the model to process different scales separately at different

branches in a layer and thus capture cross-scale information. More interestingly, since we

apply Elastic to almost all blocks, the dynamic combination of multiple scaling options at

each layer leads to exponentially many different scaling paths. They interpolate between

the largest and the smallest possible scale and collectively capture various scales. In fact,

this intuition is aligned with our experiments, where we have observed different categories

of images adopt different scaling paths (see section 2.4.2). For example, categories with

clean and uniform background images mostly choose the low-resolution paths across the

network and categories with complex and cluttered objects and background mostly choose

the high-resolution paths across the network.

The computational cost of our Elastic model is equal to or lower than the base model,

because at each layer the maximum resolution is the original resolution of the input tensor.

Low resolution branches reduce the computation and give us extra room for adding more

layers to match the computation of the original model.
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Figure 2.3. Left: ResNeXt bottleneck vs. Elastic bottleneck. Right: DenseNet block vs.

its equivalent form vs. Elastic block. Elastic blocks spend half of the paths processing

downsampled inputs in a low resolution, then the processed features are upsampled and

added back to features with the original resolution. Elastic blocks have the same number

of parameters and less FLOPs than original blocks.

This simple add-on of downsamplings and upsamplings (Elastic) can be applied to any

CNN layers Ti(x) in any architecture to improve accuracy of a model. Our applications

are introduced in the next section.

2.3.3 Augmenting Models with Elastic

Now, we show how to apply Elastic on different network architecture. To showcase

the power of Elastic, we apply Elastic on some state-of-the-art network architectures:

ResNeXt[16], Deep Layer Aggregation (DLA)[12], and DenseNet[11]. A natural way of

applying Elastic on current classification models is to augment bottleneck layers with

multiple branches. This makes our modification on ResNeXt and DLA almost identical. At

each layer we apply downsampling and bilinear upsampling to a portion of branches, as

shown in Figure 2.3-left. In DenseNet we compile an equivalent version by parallelizing a

single branch into two branches and then apply downsampling and upsampling on some

of the branches, as shown in Figure 2.3-right. Note that applying Elastic reduces FLOPs

16



in each layer. To match the original FLOPs we increase number of layers in the network

while dividing similar number of FLOPs across resolutions.

Relation to other multi-scaling approaches. As discussed in section 2.2, most of current

multi-scaling approaches can be categorized into four different categories (1) image pyramid,

(2) loss pyramid (3) filter pyramid, and (4) feature pyramid. Figure 2.2(b-e) demonstrates the

structure of these categories. All of these models can improve the accuracy usually under

a higher computational budget. Elastic (Figure 2.2) guarantees no extra computational

cost while achieving better accuracy. Filter pyramid is the most similar model to Elastic.

The major difference to the filter pyramid is that the number of FLOPs to cover a higher

receptive field in Elastic is proportionally lower due to the downsampling whereas in the

filter pyramid the FLOPs is higher or the same as the original convolution depending of

filter size or dilation parameters. Table 2.1 compares the FLOPs and number of parameters

between Elastic and feature/filter pyramid for a single convolutional operation. Note that

the FLOPs and parameters in Elastic is always (under any branching q and scaling ratio r)

lower or equal to the original model whereas in filter/feature pyramid this is higher or

equal. Feature pyramid methods are usually applied on top of an existing classification

model, by concatenating features from different resolutions. It is capable of merging

features from different scales in the backbone model and shows improvements on various

tasks, but it does not intrinsically change the scaling policy. Our Elastic structure can be

viewed as a feature pyramid inside a layer, which is able to model different scaling policies.

Spatial pyramid pooling or Atrous(dilated) spatial pyramid shares the same limitation as

feature pyramid methods.

2.4 Experiments

In this section, we present experiments on applying Elastic to current strong classification

models. We evaluate their performances on ImageNet classification, and we show consis-
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Table 2.1. Computation in multi-scaling models. This table compares the FLOPs and

number of parameters between Elastic and feature/filter pyramid for a single convolu-

tional operation, where the input tensor is n × n × c and the filter size is k × k. q denotes

the number of branches in the layer, where ∑
q
1

1
bi
= 1 and bi > 1 and ri > 1 denote the

branching and scaling ratio respectively. Note that the FLOPs and parameters in Elastic

is always (under any branching q and scaling ratio r) lower than or equal to the original

model whereas in feature/filter pyramid is higher or equal.

Multi-Scaling Method FLOPs Parameters

Single Scale n2ck2 ck2

Feature Pyramid (concat) n2(qc)k2 (qc)k2

Feature Pyramid (add) n2ck2 ck2

Filter Pyramid (standard) ∑
q
i=1

n2c(kri)
2

bi
∑

q
i=1

c(kri)
2

bi

Filter Pyramid (dilated) n2ck2 ck2

Elastic ∑
q
i=1

( n
ri
)2ck2

bi
ck2

tent improvements over current models. Furthermore, in order to show the generality of

our approach, we transfer our pre-trained Elastic models to multi-label image classification

and semantic segmentation. We use ResNeXt [16], DenseNet[11] and DLA [12] as our base

models to be augmented with Elastic.

Implementation details. We use the official PyTorch ImageNet codebase with random

crop augmentation but without color or lighting augmentation, and we report standard

224×224 single crop error on the validation set. We train our model with 8 workers (GPUs)

and 32 samples per worker. Following DLA [12], all models are trained for 120 epochs

with learning rate 0.1 and divided by 10 at epoch 30, 60, 90. We initialize our models using

normal He initialization [42]. Stride-2 average poolings are adopted as our downsamplings

unless otherwise notified since most of our downsamplings are 2× downsamplings, in

which case bilinear downsampling is equivalent to average pooling. Also, Elastic add-on

is applied to all blocks except stride-2 ones or high-level blocks operating at resolution 7.
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2.4.1 ImageNet Classification

We evaluate Elastic on ImageNet[14] 1000 way classification task (ILSVRC2012). The

ILSVRC 2012 dataset contains 1.2 million training images and 50 thousand validation

images. In this experiment, we show that our Elastic add-on consistently improves the ac-

curacy of the state-of-the-art models without introducing extra computation or parameters.

Table 2.2 compares the top-1 and top-5 error rates of all of the base models with the Elastic

augmentation (indicated by ’+Elastic’) and shows the number of parameters and FLOPs

used for a single inference. Besides DenseNet, ResNeXt, DLA, SE-ResNeXt50+Elastic is

also reported. In all the tables "*" denotes our implementation of the model. It shows

that our improvement is almost orthogonal to the channel calibration proposed in [17].

In addition, we include ResNeXt50x2+Elastic to show that our improvement does not

come from more depth added to ResNeXt101. In Figure 4 we project the numbers in the

Table 2.2 into two plots: accuracy vs. number of parameters (Figure 2.4a) and accuracy vs.

FLOPs (Figure 2.4b). This plot shows that our Elastic model can reach to a higher accuracy

without any extra (or with lower) computational cost.

25 50 75
Million parameters

21

22

To
p-

1 
er

ro
r

ResNeXt-Elastic
DLA-Elastic

ResNeXt
DLA

(a)

5 10 15
Billion FLOPs

21

22

To
p-

1 
er

ro
r

ResNeXt-Elastic
DLA-Elastic

ResNeXt
DLA

(b)

Figure 2.4. Imagenet Accuracy vs. FLOPS and Parameters. This figure shows our Elastic

model can achieve a lower error without any extra (or with lower) computational cost.
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Table 2.2. State-of-the-art model comparisons on ImageNet validation set. Base models

(DenseNet, ResNeXt, and DLA) are augmented by Elastic (indicated by ’+Elastic’). *

indicates our implementation of these models. Note that augmenting with Elastic always

improves accuracy across the board.

Model # Params FLOPs Top-1 Top-5

DenseNet201* 20.0M 4.4B 22.25 6.26
DenseNet201+Elastic 19.5M 4.3B 22.07 6.00

ResNeXt50 25.0M 4.2B 22.2 -
ResNeXt50* 25.0M 4.2B 22.23 6.25
ResNeXt50+Elastic 25.2M 4.2B 21.56 5.83

SE-ResNeXt50* 27.6M 4.2B 21.87 5.93
SE-ResNeXt50+Elastic 27.8M 4.2B 21.38 5.86

ResNeXt101 44.2M 8.0B 21.2 5.6
ResNeXt101* 44.2M 8.0B 21.18 5.83
ResNeXt101+Elastic 44.3M 7.9B 20.83 5.41
ResNeXt50x2+Elastic 45.6M 7.9B 20.86 5.52

DLA-X60 17.6M 3.6B 21.8 -
DLA-X60* 17.6M 3.6B 21.92 6.03
DLA-X60+Elastic 17.6M 3.2B 21.25 5.71

DLA-X102 26.8M 6.0B 21.5 -
DLA-X102+Elastic 25.0M 6.0B 20.71 5.38
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2.4.2 Scale Policy Analysis

To analyze the learned scale policy of our Elastic model, we define a simple score that

shows at each block what was the resolution level (high or low) that the input tensor was

processed. We formally define this scale policy score at each block by differences of mean

activations in high-resolution and low-resolution branches.

S =
1

4HWC

2H

∑
h=1

2W

∑
w=1

C

∑
c=1

xhigh
hwc − 1

HWC

H

∑
h=1

W

∑
w=1

C

∑
c=1

xlow
hwc (2.5)

where H, W, C are the height, width and number of channels in low resolution branches.

xhigh and xlow are the activations after 3 × 3 convolutions, fixed batch normalizations, and

ReLU in high-resolution and low-resolution branches respectively. Figure 2.5 shows all

of the categories in ImageNet validation sorted by the mean scale policy score S (average

over all layers for all images within a category). As it can be seen, categories with more

complex images appear to have a larger S i.e. they mostly go through high-resolution

branches in each block and images with simpler patterns appear to have smaller S which

means they mostly go through the low-resolution branches in each block.

To analyze the impact of the scale policy on the accuracy of the Elastic, we represent each

image (in the ImageNet validation set) by a 17-dimensional vector such that the values of

the 17 elements are the scale policy score S for the 17 Elastic blocks in a ResNeXt50+Elastic

model. Then we apply tsne[43] on all these vectors to get a two-dimensional visualization.

In figure 2.6-(left) we draw all the images in the tsne coordinates. It can be seen that

images are clustered based on their complexity pattern. In figure 2.6-(middle) for all of

the images we show the 17 scale policy scores S in 17 blocks. As it can be seen most of the

images go through the high-resolution branches on the early layers and low-resolution

branches at the later layers but some images break this pattern. For examples, images

pointed by the green circle are activating high-resolution branches in the 13th block of

the network. These images usually contain a complex pattern that the network needs to
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Figure 2.5. Scale policy for complex vs. simple image categories. This figure shows

the overall block scale policy score on the entire ImageNet categories. It shows that

categories with complex image patterns mostly go through the high-resolution branches

in the network and categories with simpler image pattern go through the low-resolution

branches.
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extract features in high-resolution to classify correctly. Images pointed by the purple circle

are activating low-resolution branches at early layers, the 4th block of the network. These

images usually contain a simple pattern that the network can classify at low-resolution

early on. In Figure 2.6-(right) we show the density of all validation images in the tsne

space in the bottom row, and in the top row, we show the density of images that are

correctly classified by our Elastic model and miss-classified by the base ResNeXt model.

This comparison shows that most of the images that Elastic can improve predictions on

are the ones with more challenging scale properties. Some of them are pointed out by the

yellow circle.

2.4.3 MS COCO Multi-Label Classification

To further investigate the generality of our model, we finetune our ImageNet pre-trained

model and evaluate on MS COCO multi-label classification task. The MSCOCO images

are far more complicated in that there exist multiple objects from different categories and

scales in each image.

Implementation details. All models that we report are finetuned from ImageNet pre-

trained model for 36 epochs with learning rate starting at 0.001 and being divided by 10 at

epoch 24, 30. We train on 4 workers and 24 images per worker with SGD and weight decay

of 0.0005. We train our models with binary cross entropy (BCE) loss, which is usually

used as a baseline for domain-specific works that explicitly model spatial or semantic

relations. We use the same data augmentations as our ImageNet training, and adopt

standard multi-label testing on images resized to 224 × 224.

Evaluation metrics. Following the literature of multi-label classification[44]–[47], results

are evaluated using macro/micro evaluations. After training the models with BCE loss,

labels with greater than 0.5 probability are considered positive. Then, macro and micro

F1-scores are calculated to measure overall performance and the average of per-class
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Figure 2.6. Scale policy analysis. This figure shows the impact of the scale policy on the

accuracy of our Elastic model. (left) shows all the ImageNet validation set clustered using

tsne by their scale policy pattern in the ResNeXt50+Elastic as discussed in section 2.4.2.

(middle) shows the the scale policy score of all the images at 17 blocks of the network.

Most of the images use high-resolution features at early layers and low-resolution features

at later layers but some images break this pattern. Images pointed in the green circle

use high-resolution features in the 13th block. Images pointed in the purple circle use

low-resolution features in the 4th block. These images usually contain a simpler pattern.

(right)-bottom shows the density of images in the tsne space and (right)-top shows the

density of the images that got correctly classified by Elastic model but miss-classified by

the base ResNeXt model. This shows that Elastic can improve prediction when images are

challenging in terms of their scale information. Some samples are pointed by the yellow

circle. Best viewed in color.

performances respectively.

Results. Table 2.3 shows that elastic consistently improves per-class F1 and overall F1. In

the case of DLA, Elastic augmentation even reduces the FLOPs and number of parameters

by a large margin.

Scale challenging images. We claimed that Elastic is very effective on scale challenging

images. Now, we empirically show that a large portion of the accuracy improvement of

our Elastic model is rooted in a better scale policy learning. We follow MSCOCO official
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Table 2.3. MSCOCO multi-class classification. This table shows the generality of our

Elastic model by finetuning pre-trained ImageNet models on MSCOCO multi-class images

with binary cross entropy loss. Elastic improves F1 scores all across the board.

Model F1-PerClass F1-Overall

ResNet101* 69.98 74.58

DenseNet201* 69.95 74.50
DenseNet201+Elastic 70.40 74.99

DLA-X60* 70.79 75.41
DLA-X60+Elastic 71.35 75.77

ResNeXt50* 70.12 74.52
ResNeXt50+Elastic 71.08 75.37

ResNeXt101* 70.95 75.21
ResNeXt101+Elastic 71.83 75.93

split of small, medium, and large objects. Per-class and overall F1, on small, medium and

large objects, are computed. Since we don’t have per-scale predictions, false positives are

shared and re-defined as cases where none of small, medium, large object appears, but the

model predicts positive. Results in Table 2.4 show that ResNeXt50 + Elastic provides the

largest gains on small objects. Elastic allows large objects to be dynamically captured by

low resolution paths, so filters in high resolution branches do not waste capacity dealing

with parts of large objects. Elastic blocks also merge various scales and feed scale-invariant

features into the next block, so it shares computation in all higher blocks, and thus allows

more capacity for small objects, at high resolution. This proves our hypothesis that Elastic

understands scale challenging images better through scale policy learning.

Scale stress test. Besides standard testing where images are resized to 224 × 224, we

also perform a stress test on the validation set. MSCOCO images’ resolutions are around

640 × 480. Given a DLA-X60 model trained with 224 × 224 images, we also test it with

images from different resolutions: 96× 96, 448× 448, 896× 896 and change the last average

pooling layer accordingly. Figure 2.7 shows that Elastic does not only perform well on
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Table 2.4. F1 scores on small, medium, and large objects respectively. C means per-class F1

and O means overall F1. ResNeXt50 + Elastic improves the most on small objects.

Model Sm-C Md-C Lg-C Sm-O Md-O Lg-O

ResNeXt50 45.57 61.99 65.88 58.51 68.51 77.53
+Elastic 46.67 63.05 66.46 59.47 69.47 78.03

Relative 2.43% 1.72% 0.88% 1.64% 1.40% 0.65%

trained scale, but also shows greater improvement on higher resolution images at test

time. In addition, we do not observe an accuracy drop on 96 × 96 test, though the total

computation assigned to low level is reduced in DLA-X60+Elastic.
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Figure 2.7. Scale stress test on MSCOCO multi-label classification. This bar chart shows

the relative F1 improvement of DLA-x60 being augmented Elastic over different image

resolutions. Although both models are trained on 224 × 224 images, Elastic shows larger

improvement when tested on high-resolution images.

2.4.4 PASCAL VOC Semantic Segmentation

To show the strength of our Elastic model on a pixel level classification task, we report

experiments on PASCAL VOC semantic segmentation. ResNeXt models use weight decay

5e-4 instead of 1e-4 in ResNet. All models are trained for 50 epochs and we report mean

intersection-over-union (IOU) on the val set. Other implementation details follow [48],

with MG(1, 2, 4), ASPP(6, 12, 18), image pooling, OS=16, batch size of 16, for both training
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and validation, without bells and whistles. Our ResNet101 reproduces the mIOU of 77.21%

reported in [48]. Our DLA models use the original iterative deep aggregation as a decoder

and are trained with the same scheduling as [48]. In Table. 2.5, Elastic shows a large margin

of improvement. This verifies that Elastic finds the scale policy that allows processing

high-level semantic information and low-level boundary information together, which is

critical in the task of semantic segmentation.

Table 2.5. PASCAL VOC semantic segmentation. This table compares the accuracy

of semantic image segmentation (mIOU%) using Elastic models vs. the original model.

Elastic models outperform original models by a large margin. This supports that Elastic

learns a scale policy that allows processing high-level semantic information and low-level

boundary information together.

Model Original Elastic

ResNeXt50* 75.29 77.70
ResNeXt101* 77.47 78.51
DLA-X60* 69.96 73.59

2.4.5 Ablation Study

In this section, we study the effect of different elements in Elastic models. We chose

DLA-X60 as our baseline and applied Elastic to perform the ablation experiments.

Upsampling/Downsampling methods. We carried our experiments with bilinear up-

sampling and downsampling on DLA-X60+Elastic. In Table 2.6 we show the accuracy

of ImageNet classification using Elastic by different choices of up(down)sampling meth-

ods: Bilinear, Nearest, Trained filters and Trained Dilated filters with and without av-

erage pooling (indicated by w/ AP). Our experiment shows Elastic with the bilinear

up(down)sampling is the best choice.
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Method # FLOPs Top-1 error

Original (no Elastic) 3.6B 21.92
Bilinear w/ AP 3.2B 21.25
Nearest w/ AP 3.2B 21.49
Trained Dilated Filter w/ AP 3.6B 21.20
Trained Dilated Filter 3.6B 21.60
Trained Filter 3.2B 21.52

Table 2.6. Ablation study of up(down)sampling methods. In this table, we show the

accuracy of ImageNet classification using Elastic by different choices of up(down)sampling

methods. w/ AP indicates average pooling. Our experiment shows Elastic with bilinear

up(down)sampling is the best choice with reduced FLOPs.

High/low-resolution branching rate. We sweep over different choices of dividing parallel

branches in the blocks into the high and low-resolutions. In table 2.7 we compare the

variations of the percentage of branches allocated to high and low-resolutions at each block.

This experiment shows that the best trade-off is when we equally divide the branches into

high and low-resolutions. Interestingly, all of the branching options are outperforming the

vanilla model (without Elastic). This shows that our Elastic model is quite robust to this

parameter.

Table 2.7. Ablation study of high(low) resolution branching rates. In this table, we

evaluate different branching rate across high and low-resolutions at each block. We

observe that the best trade-off is when we equally divide the branches into high and

low-resolutions. Independent of the ratio, all variations of branching are better than the

base model.

High-Res Low-Res FLOPs Top-1 error

100% 0% 3.6B 21.92
50% 50% 3.2B 21.25
75% 25% 3.4B 21.35
25% 75% 2.9B 21.44
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2.5 Conclusion

We proposed Elastic, a model that captures scale variations in images by learning the scale

policy from data. Our Elastic model is simple, efficient and very effective. Our model

can easily be applied to any CNN architectures and improve accuracy while maintaining

the same computation (or lower) as the original model. We applied Elastic to several

state-of-the-art network architectures and showed consistent improvement on ImageNet

classification, MSCOCO multi-class classification, and PASCAL VOC semantic segmenta-

tion. Our results show major improvement for images with scale challenges e.g. images

consist of several small objects or objects with large scale variations.
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Chapter 3

Axial-DeepLab: Stand-Alone
Axial-Attention for Panoptic
Segmentation

This chapter studies the possibility of completely replacing local convolution with self-

attention layers that model global relations in all the layers.

3.1 Introduction

Convolution is a core building block in computer vision. Early algorithms employ convolu-

tional filters to blur images, extract edges, or detect features. It has been heavily exploited

in modern neural networks [8], [49] due to its efficiency and generalization ability, in

comparison to fully connected models [50]. The success of convolution mainly comes

from two properties: translation equivariance, and locality. Translation equivariance,

although not exact [51], aligns well with the nature of imaging and thus generalizes the

model to different positions or to images of different sizes. Locality, on the other hand,

reduces parameter counts and M-Adds. However, it makes modeling long range relations

challenging.

A rich set of literature has discussed approaches to modeling long range interactions
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in convolutional neural networks (CNNs). Some employ atrous convolutions [52]–[55],

larger kernel [56], or image pyramids [1], [57], either designed by hand or searched by

algorithms [58]–[60]. Another line of works adopts attention mechanisms. Attention shows

its ability of modeling long range interactions in language modeling [61], [62], speech

recognition [63], [64], and neural captioning [65]. Attention has since been extended to

vision, giving significant boosts to image classification [66], object detection [67], semantic

segmentation [68], video classification [69], and adversarial defense [70]. These works

enrich CNNs with non-local or long-range attention modules.

Recently, stacking attention layers as stand-alone models without any spatial convolu-

tion has been proposed [71], [72] and shown promising results. However, naive attention

is computationally expensive, especially on large inputs. Applying local constraints to

attention, proposed by [71], [72], reduces the cost and enables building fully attentional

models. However, local constraints limit model receptive field, which is crucial to tasks

such as segmentation, especially on high-resolution inputs. In this chapter, we propose to

adopt axial-attention [68], [73], which not only allows efficient computation, but recovers

the large receptive field in stand-alone attention models. The core idea is to factorize 2D

attention into two 1D attentions along height- and width-axis sequentially. Its efficiency

enables us to attend over large regions and build models to learn long range or even global

interactions. Additionally, most previous attention modules do not utilize positional infor-

mation, which degrades attention’s ability in modeling position-dependent interactions,

like shapes or objects at multiple scales. Recent works [66], [71], [72] introduce positional

terms to attention, but in a context-agnostic way. In this chapter, we augment the positional

terms to be context-dependent, making our attention position-sensitive, with marginal

costs.

We show the effectiveness of our axial-attention models on ImageNet [14] for classi-

fication, and on three datasets (COCO [15], Mapillary Vistas [74], and Cityscapes [75])

for panoptic segmentation [76], instance segmentation, and semantic segmentation. In
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particular, on ImageNet, we build an Axial-ResNet by replacing the 3× 3 convolution in all

residual blocks [10] with our position-sensitive axial-attention layer, and we further make

it fully attentional [71] by adopting axial-attention layers in the ‘stem’. As a result, our

Axial-ResNet attains state-of-the-art results among stand-alone attention models on Ima-

geNet. For segmentation tasks, we convert Axial-ResNet to Axial-DeepLab by replacing

the backbones in Panoptic-DeepLab [77]. On COCO [15], our Axial-DeepLab outperforms

the current bottom-up state-of-the-art, Panoptic-DeepLab [78], by 2.8% PQ on test-dev set.

We also show state-of-the-art segmentation results on Mapillary Vistas [74], and Cityscapes

[75].

To summarize, our contributions are four-fold:

• The proposed method is the first attempt to build stand-alone attention models with

large or global receptive field.

• We propose position-sensitive attention layer that makes better use of positional

information without adding much computational cost.

• We show that axial attention works well, not only as a stand-alone model on image

classification, but also as a backbone on panoptic segmentation, instance segmenta-

tion, and segmantic segmentation.

• Our Axial-DeepLab improves significantly over bottom-up state-of-the-art on COCO,

achieving comparable performance of two-stage methods. We also surpass previous

state-of-the-art methods on Mapillary Vistas and Cityscapes.

3.2 Related Work

Top-down panoptic segmentation. Most state-of-the-art panoptic segmentation models

employ a two-stage approach where object proposals are firstly generated followed by

sequential processing of each proposal. We refer to such approaches as top-down or
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proposal-based methods. Mask R-CNN [79] is commonly deployed in the pipeline for

instance segmentation, paired with a light-weight stuff segmentation branch. For example,

Panoptic FPN [80] incorporates a semantic segmentation head to Mask R-CNN [79], while

Porzi et al. [81] append a light-weight DeepLab-inspired module [82] to the multi-scale

features from FPN [41]. Additionally, some extra modules are designed to resolve the

overlapping instance predictions by Mask R-CNN. TASCNet [83] and AUNet [84] propose

a module to guide the fusion between ‘thing’ and ‘stuff’ predictions, while Liu et al.

[85] adopt a Spatial Ranking module. UPSNet [86] develops an efficient parameter-free

panoptic head for fusing ‘thing’ and ‘stuff’, which is further explored by Li et al. [87] for

end-to-end training of panoptic segmentation models. AdaptIS [88] uses point proposals

to generate instance masks.

Bottom-up panoptic segmentation. In contrast to top-down approaches, bottom-up or

proposal-free methods for panoptic segmentation typically start with the semantic seg-

mentation prediction followed by grouping ‘thing’ pixels into clusters to obtain instance

segmentation. DeeperLab [89] predicts bounding box four corners and object centers for

class-agnostic instance segmentation. SSAP [90] exploits the pixel-pair affinity pyramid

[91] enabled by an efficient graph partition method [92]. BBFNet [93] obtains instance

segmentation results by Watershed transform [94], [95] and Hough-voting [96], [97]. Re-

cently, Panoptic-DeepLab [78], a simple, fast, and strong approach for bottom-up panoptic

segmentation, employs a class-agnostic instance segmentation branch involving a simple

instance center regression [98]–[100], coupled with DeepLab semantic segmentation out-

puts [48], [55], [101]. Panoptic-DeepLab has achieved state-of-the-art results on several

benchmarks, and our method builds on top of it.

Self-attention. Attention, introduced by [102] for the encoder-decoder in a neural sequence-

to-sequence model, is developed to capture correspondence of tokens between two se-

quences. In contrast, self-attention is defined as applying attention to a single context
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instead of across multiple modalities. Its ability to directly encode long-range interactions

and its parallelizability, has led to state-of-the-art performance for various tasks [6], [61],

[103]–[107]. Recently, self-attention has been applied to computer vision, by augmenting

CNNs with non-local or long-range modules. Non-local neural networks [69] show that

self-attention is an instantiation of non-local means [108] and achieve gains on many

vision tasks such as video classification and object detection. Additionally, [66], [109] show

improvements on image classification by combining features from self-attention and con-

volution. State-of-the-art results on video action recognition tasks [109] are also achieved

in this way. On semantic segmentation, self-attention is developed as a context aggregation

module that captures multi-scale context [68], [110]–[112]. Efficient attention methods are

proposed to reduce its complexity [68], [107], [113]. Additionally, CNNs augmented with

non-local means [108] are shown to be more robust to adversarial attacks [70]. Besides

discriminative tasks, self-attention is also applied to generative modeling of images [73],

[114], [115]. Recently, [71], [72] show that self-attention layers alone could be stacked to

form a fully attentional model by restricting the receptive field of self-attention to a local

square region. Encouraging results are shown on both image classification and object

detection. In this chapter, we follow this direction of research and propose a stand-alone

self-attention model with large or global receptive field, making self-attention models

non-local again. Our models are evaluated on bottom-up panoptic segmentation and show

significant improvements.

3.3 Method

We begin by formally introducing our position-sensitive self-attention mechanism. Then,

we discuss how it is applied to axial-attention and how we build stand-alone Axial-ResNet

and Axial-DeepLab with axial-attention layers.
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3.3.1 Position-Sensitive Self-Attention

Self-Attention. Self-attention mechanism is usually applied to vision models as an add-on

to augment CNNs outputs [68], [69], [114]. Given an input feature map x ∈ Rh×w×din

with height h, width w, and channels din, the output at position o = (i, j), yo ∈ Rdout , is

computed by pooling over the projected input as:

yo = ∑
p∈N

softmaxp(qT
o kp)vp (3.1)

where N is the whole location lattice, and queries qo = WQxo, keys ko = WKxo, values

vo = WV xo are all linear projections of the input xo ∀o ∈ N . WQ, WK ∈ Rdq×din and

WV ∈ Rdout×din are all learnable matrices. The softmaxp denotes a softmax function

applied to all possible p = (a, b) positions, which in this case is also the whole 2D lattice.

This mechanism pools values vp globally based on affinities xT
o WT

QWKxp, allowing us to

capture related but non-local context in the whole feature map, as opposed to convolution

which only captures local relations.

However, self-attention is extremely expensive to compute (O(h2w2)) when the spatial

dimension of the input is large, restricting its use to only high levels of a CNN (i.e.,

downsampled feature maps) or small images. Another drawback is that the global pooling

does not exploit positional information, which is critical to capture spatial structures or

shapes in vision tasks.

These two issues are mitigated in [71] by adding local constraints and positional

encodings to self-attention. For each location o, a local m × m square region is extracted

to serve as a memory bank for computing the output yo. This significantly reduces its

computation to O(hwm2), allowing self-attention modules to be deployed as stand-alone

layers to form a fully self-attentional neural network. Additionally, a learned relative

positional encoding term is incorporated into the affinities, yielding a dynamic prior of
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where to look at in the receptive field (i.e., the local m × m square region). Formally, [71]

proposes

yo = ∑
p∈Nm×m(o)

softmaxp(qT
o kp + qT

o rp−o)vp (3.2)

where Nm×m(o) is the local m × m square region centered around location o = (i, j), and

the learnable vector rp−o ∈ Rdq is the added relative positional encoding. The inner

product qT
o rp−o measures the compatibility from location p = (a, b) to location o = (i, j).

We do not consider absolute positional encoding qT
o rp, because they do not generalize well

compared to the relative counterpart [71]. In the following paragraphs, we drop the term

relative for conciseness.

In practice, dq and dout are much smaller than din, and one could extend single-head

attention in Equation (3.2) to multi-head attention to capture a mixture of affinities. In

particular, multi-head attention is computed by applying N single-head attentions in

parallel on xo (with different Wn
Q, Wn

K, Wn
V , ∀n ∈ {1, 2, . . . , N} for the n-th head), and

then obtaining the final output zo by concatenating the results from each head, i.e., zo =

concatn(yn
o ). Note that positional encodings are often shared across heads, so that they

introduce marginal extra parameters.

Position-Sensitivity. We notice that previous positional bias only depends on the query

pixel xo, not the key pixel xp. However, the keys xp could also have information about

which location to attend to. We therefore add a key-dependent positional bias term kT
p rk

p−o,

besides the query-dependent bias qT
o rq

p−o.

Similarly, the values vp do not contain any positional information in Equation (3.2).

In the case of large receptive fields or memory banks, it is unlikely that yo contains the

precise location from which vp comes. Thus, previous models have to trade-off between

using smaller receptive fields (i.e., small m × m regions) and throwing away precise spatial

structures. In this chapter, we enable the output yo to retrieve relative positions rv
p−o,
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besides the content vp, based on query-key affinities qT
o kp. Formally,

yo = ∑
p∈Nm×m(o)

softmaxp(qT
o kp + qT

o rq
p−o + kT

p rk
p−o)(vp + rv

p−o) (3.3)

where the learnable rk
p−o ∈ Rdq is the positional encoding for keys, and rv

p−o ∈ Rdout is

for values. Both vectors do not introduce many parameters, since they are shared across

attention heads in a layer, and the number of local pixels |Nm×m(o)| is usually small.

We call this design position-sensitive self-attention, which captures long range interac-

tions with precise positional information at a reasonable computation overhead, as verified

in our experiments.

3.3.2 Axial-Attention

The local constraint, proposed by the stand-alone self-attention models [71], significantly

reduces the computational costs in vision tasks and enables building fully self-attentional

model. However, such constraint sacrifices the global connection, making attention’s recep-

tive field no larger than a depthwise convolution with the same kernel size. Additionally,

the local self-attention, performed in local square regions, still has complexity quadratic to

the region length, introducing another hyper-parameter to trade-off between performance

and computation complexity. In this chapter, we propose to adopt axial-attention [68], [73]

in stand-alone self-attention, ensuring both global connection and efficient computation.

Specifically, we first define an axial-attention layer on the width-axis of an image as simply

a one dimensional position-sensitive self-attention, and use the similar definition for the

height-axis. To be concrete, the axial-attention layer along the width-axis is defined as

follows.

yo = ∑
p∈N1×m(o)

softmaxp(qT
o kp + qT

o rq
p−o + kT

p rk
p−o)(vp + rv

p−o) (3.4)
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Figure 3.1. A non-local block (left) vs. our position-sensitive axial-attention applied along

the width-axis (right). “⊗” denotes matrix multiplication, and “⊕” denotes element-wise

sum. The softmax is performed on the last axis. Blue boxes denote 1 × 1 convolutions,

and red boxes denote relative positional encoding. The channels din = 128, dq = 8, and

dout = 16 is what we use in the first stage of ResNet after ‘stem’

One axial-attention layer propagates information along one particular axis. To capture

global information, we employ two axial-attention layers consecutively for the height-

axis and width-axis, respectively. Both of the axial-attention layers adopt the multi-head

attention mechanism, as described above.

Axial-attention reduces the complexity to O(hwm). This enables global receptive field,

which is achieved by setting the span m directly to the whole input features. Optionally,

one could also use a fixed m value, in order to reduce memory footprint on huge feature

maps.

Axial-ResNet. To transform a ResNet [10] to an Axial-ResNet, we replace the 3 × 3 convo-

lution in the residual bottleneck block by two multi-head axial-attention layers (one for

height-axis and the other for width-axis). Optional striding is performed on each axis after

the corresponding axial-attention layer. The two 1 × 1 convolutions are kept to shuffle the
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Figure 3.2. An axial-attention block, which consists of two axial-attention layers operating

along height- and width-axis sequentially. The channels din = 128, dout = 16 is what we

use in the first stage of ResNet after ‘stem’. We employ N = 8 attention heads

features. This forms our (residual) axial-attention block, as illustrated in Figure 3.2, which

is stacked multiple times to obtain Axial-ResNets. Note that we do not use a 1 × 1 convolu-

tion in-between the two axial-attention layers, since matrix multiplications (WQ, WK, WV)

follow immediately. Additionally, the stem (i.e., the first strided 7 × 7 convolution and

3 × 3 max-pooling) in the original ResNet is kept, resulting in a conv-stem model where

convolution is used in the first layer and attention layers are used everywhere else. In

conv-stem models, we set the span m to the whole input from the first block, where the

feature map is 56×56.

In our experiments, we also build a full axial-attention model, called Full Axial-ResNet,

which further applies axial-attention to the stem. Instead of designing a special spatially-

varying attention stem [71], we simply stack three axial-attention bottleneck blocks. In

addition, we adopt local constraints (i.e., a local m × m square region as in [71]) in the first

few blocks of Full Axial-ResNets, in order to reduce computational cost.

Axial-DeepLab. To further convert Axial-ResNet to Axial-DeepLab for segmentation

tasks, we make several changes as discussed below.

Firstly, to extract dense feature maps, DeepLab [55] changes the stride and atrous rates

of the last one or two stages in ResNet [10]. Similarly, we remove the stride of the last

stage but we do not implement the ‘atrous’ attention module, since our axial-attention
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already captures global information for the whole input. In this chapter, we extract feature

maps with output stride (i.e., the ratio of input resolution to the final backbone feature

resolution) 16. We do not pursue output stride 8, since it is computationally expensive.

Secondly, we do not adopt the atrous spatial pyramid pooling module (ASPP) [48], [82],

since our axial-attention block could also efficiently encode the multi-scale or global infor-

mation. We show in the experiments that our Axial-DeepLab without ASPP outperforms

Panoptic-DeepLab [78] with and without ASPP.

Lastly, following Panoptic-DeepLab [78], we adopt exactly the same stem [24] of

three convolutions, dual decoders, and prediction heads. The heads produce semantic

segmentation and class-agnostic instance segmentation, and they are merged by majority

voting [89] to form the final panoptic segmentation.

In cases where the inputs are extremely large (e.g., 2177 × 2177) and memory is con-

strained, we resort to a large span m = 65 in all our axial-attention blocks. Note that we do

not consider the axial span as a hyper-parameter because it is already sufficient to cover

long range or even global context on several datasets, and setting a smaller span does not

significantly reduce M-Adds.

3.4 Experimental Results

We conduct experiments on four large-scale datasets. We first report results with our

Axial-ResNet on ImageNet [14]. We then convert the ImageNet pretrained Axial-ResNet to

Axial-DeepLab, and report results on COCO [15], Mapillary Vistas [74], and Cityscapes [75]

for panoptic segmentation, evaluated by panoptic quality (PQ) [76]. We also report average

precision (AP) for instance segmentation, and mean IoU for semantic segmentation on

Mapillary Vistas and Cityscapes. Our models are trained using TensorFlow [116] on 128

TPU cores for ImageNet and 32 cores for panoptic segmentation.
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Training protocol. On ImageNet, we adopt the same training protocol as [71] for a fair

comparison, except that we use batch size 512 for Full Axial-ResNets and 1024 for all other

models, with learning rates scaled accordingly [117].

For panoptic segmentation, we strictly follow Panoptic-DeepLab [78], except using

a linear warm up Radam [118] Lookahead [119] optimizer (with the same learning rate

0.001). All our results on panoptic segmentation use this setting. We note this change does

not improve the results, but smooths our training curves. Panoptic-DeepLab yields similar

result in this setting.

3.4.1 ImageNet

For ImageNet, we build Axial-ResNet-L from ResNet-50 [10]. In detail, we set din = 128,

dout = 2dq = 16 for the first stage after the ‘stem’. We double them when spatial resolution

is reduced by a factor of 2 [9]. Additionally, we multiply all the channels [120]–[122] by 0.5,

0.75, and 2, resulting in Axial-ResNet-{S, M, XL}, respectively. Finally, Stand-Alone Axial-

ResNets are further generated by replacing the ‘stem’ with three axial-attention blocks

where the first block has stride 2. Due to the computational cost introduced by the early

layers, we set the axial span m = 15 in all blocks of Stand-Alone Axial-ResNets. We always

use N = 8 heads [71]. In order to avoid careful initialization of WQ, WK, WV , rq, rk, rv, we

use batch normalizations [123] in all attention layers.

Table 3.1 summarizes our ImageNet results. The baselines ResNet-50 [10] (done by [71])

and Conv-Stem + Attention [71] are also listed. In the conv-stem setting, adding BN to

attention layers of [71] slightly improves the performance by 0.3%. Our proposed position-

sensitive self-attention (Conv-Stem + PS-Attention) further improves the performance by

0.4% at the cost of extra marginal computation. Our Conv-Stem + Axial-Attention performs

on par with Conv-Stem + Attention [71] while being more parameter- and computation-

efficient. When comparing with other full self-attention models, our Full Axial-Attention

outperforms Full Attention [71] by 0.5%, while being 1.44× more parameter-efficient and
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1.09× more computation-efficient.

Following [71], we experiment with different network widths (i.e., Axial-ResNets-

{S,M,L,XL}), exploring the trade-off between accuracy, model parameters, and computa-

tional cost (in terms of M-Adds). As shown in Figure 3.3, our proposed Conv-Stem + PS-

Attention and Conv-Stem + Axial-Attention already outperforms ResNet-50 [10], [71] and

attention models [71] (both Conv-Stem + Attention, and Full Attention) at all settings. Our

Full Axial-Attention further attains the best accuracy-parameter and accuracy-complexity

trade-offs.

Table 3.1. ImageNet validation set results. BN: Use batch normalizations in attention

layers. PS: Our position-sensitive self-attention. Full: Stand-alone self-attention models

without spatial convolutions

Method BN PS Full Params M-Adds Top-1

Conv-Stem methods

ResNet-50 [10], [71] 25.6M 4.1B 76.9
Conv-Stem + Attention [71] 18.0M 3.5B 77.4

Conv-Stem + Attention ✓ 18.0M 3.5B 77.7
Conv-Stem + PS-Attention ✓ ✓ 18.0M 3.7B 78.1
Conv-Stem + Axial-Attention ✓ ✓ 12.4M 2.8B 77.5

Fully self-attentional methods

LR-Net-50 [72] ✓ 23.3M 4.3B 77.3
Full Attention [71] ✓ 18.0M 3.6B 77.6
Full Axial-Attention ✓ ✓ ✓ 12.5M 3.3B 78.1

3.4.2 COCO

The ImageNet pretrained Axial-ResNet model variants (with different channels) are then

converted to Axial-DeepLab model variant for panoptic segmentation tasks. We first

demonstrate the effectiveness of our Axial-DeepLab on the challenging COCO dataset [15],

which contains objects with various scales (from less than 32 × 32 to larger than 96 × 96).
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Figure 3.3. Comparing parameters and M-Adds against accuracy on ImageNet classifica-

tion. Our position-sensitive self-attention (Conv-Stem + PS-Attention) and axial-attention

(Conv-Stem + Axial-Attention) consistently outperform ResNet-50 [10], [71] and attention

models [71] (both Conv-Stem + Attention, and Full Attention), across a range of network

widths (i.e., different channels). Our Full Axial-Attention works the best in terms of both

parameters and M-Adds

Val set: In Table 3.2, we report our validation set results and compare with other

bottom-up panoptic segmentation methods, since our method also belongs to the bottom-

up family. As shown in the table, our single-scale Axial-DeepLab-S outperforms DeeperLab

[89] by 8% PQ, multi-scale SSAP [90] by 5.3% PQ, and single-scale Panoptic-DeepLab

by 2.1% PQ. Interestingly, our single-scale Axial-DeepLab-S also outperforms multi-scale

Panoptic-DeepLab by 0.6% PQ while being 3.8× parameter-efficient and 27× computation-

efficient (in M-Adds). Increasing the backbone capacity (via large channels) continuously

improves the performance. Specifically, our multi-scale Axial-DeepLab-L attains 43.9% PQ,

outperforming Panoptic-DeepLab [78] by 2.7% PQ.

Test-dev set: As shown in Table 3.3, our Axial-DeepLab variants show consistent

improvements with larger backbones. Our multi-scale Axial-DeepLab-L attains the perfor-

mance of 44.2% PQ, outperforming DeeperLab [89] by 9.9% PQ, SSAP [90] by 7.3% PQ, and

Panoptic-DeepLab [78] by 2.8% PQ, setting a new state-of-the-art among bottom-up ap-
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Table 3.2. COCO val set. MS: Multi-scale inputs

Method Backbone MS Params M-Adds PQ PQTh PQSt

DeeperLab [89] Xception-71 33.8 - -
SSAP [90] ResNet-101 ✓ 36.5 - -
Panoptic-DeepLab [78] Xception-71 46.7M 274.0B 39.7 43.9 33.2
Panoptic-DeepLab [78] Xception-71 ✓ 46.7M 3081.4B 41.2 44.9 35.7

Axial-DeepLab-S Axial-ResNet-S 12.1M 110.4B 41.8 46.1 35.2
Axial-DeepLab-M Axial-ResNet-M 25.9M 209.9B 42.9 47.6 35.8
Axial-DeepLab-L Axial-ResNet-L 44.9M 343.9B 43.4 48.5 35.6
Axial-DeepLab-L Axial-ResNet-L ✓ 44.9M 3867.7B 43.9 48.6 36.8

proaches. We also list several top-performing methods adopting the top-down approaches

in the table for reference.

Scale Stress Test: In order to verify that our model learns long range interactions, we

perform a scale stress test besides standard testing. In the stress test, we train Panoptic-

DeepLab (X-71) and our Axial-DeepLab-L with the standard setting, but test them on

out-of-distribution resolutions (i.e., resize the input to different resolutions). Figure 3.4

summarizes our relative improvements over Panoptic-DeepLab on PQ, PQ (thing) and PQ

(stuff). When tested on huge images, Axial-DeepLab shows large gain (30%), demonstrat-

ing that it encodes long range relations better than convolutions. Besides, Axial-DeepLab

improves 40% on small images, showing that axial-attention is more robust to scale varia-

tions.

3.4.3 Mapillary Vistas

We evaluate our Axial-DeepLab on the large-scale Mapillary Vistas dataset [74]. We only

report validation set results, since the test server is not available.

Val set. As shown in Table 3.4, our Axial-DeepLab-L outperforms all the state-of-the-art

methods in both single-scale and multi-scale cases. Our single-scale Axial-DeepLab-L

performs 2.4% PQ better than the previous best single-scale Panoptic-DeepLab (X-71) [78].
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Table 3.3. COCO test-dev set. MS: Multi-scale inputs

Method Backbone MS PQ PQTh PQSt

Top-down panoptic segmentation methods

TASCNet [83] ResNet-50 40.7 47.0 31.0
Panoptic-FPN [80] ResNet-101 40.9 48.3 29.7
AdaptIS [88] ResNeXt-101 ✓ 42.8 53.2 36.7
AUNet [84] ResNeXt-152 46.5 55.8 32.5
UPSNet [86] DCN-101 [124] ✓ 46.6 53.2 36.7
Li et al. [87] DCN-101 [124] 47.2 53.5 37.7
SpatialFlow [125] DCN-101 [124] ✓ 47.3 53.5 37.9
SOGNet [126] DCN-101 [124] ✓ 47.8 - -

Bottom-up panoptic segmentation methods

DeeperLab [89] Xception-71 34.3 37.5 29.6
SSAP [90] ResNet-101 ✓ 36.9 40.1 32.0
Panoptic-DeepLab [78] Xception-71 ✓ 41.4 45.1 35.9

Axial-DeepLab-S Axial-ResNet-S 42.2 46.5 35.7
Axial-DeepLab-M Axial-ResNet-M 43.2 48.1 35.9
Axial-DeepLab-L Axial-ResNet-L 43.6 48.9 35.6
Axial-DeepLab-L Axial-ResNet-L ✓ 44.2 49.2 36.8
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Figure 3.4. Scale stress test on COCO val set. Axial-DeepLab gains the most when tested on

extreme resolutions. On the x-axis, ratio 4.0 means inference with resolution 4097 × 4097
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In multi-scale setting, our lightweight Axial-DeepLab-L performs better than Panoptic-

DeepLab (Auto-DeepLab-XL++), not only on panoptic segmentation (0.8% PQ) and in-

stance segmentation (0.3% AP), but also on semantic segmentation (0.8% mIoU), the task

that Auto-DeepLab [60] was searched for. Additionally, to the best of our knowledge, our

Axial-DeepLab-L attains the best single-model semantic segmentation result.

Table 3.4. Mapillary Vistas validation set. MS: Multi-scale inputs

Method MS Params M-Adds PQ PQTh PQSt AP mIoU

Top-down panoptic segmentation methods

TASCNet [83] 32.6 31.1 34.4 18.5 -
TASCNet [83] ✓ 34.3 34.8 33.6 20.4 -
AdaptIS [88] 35.9 31.5 41.9 - -
Seamless [81] 37.7 33.8 42.9 16.4 50.4

Bottom-up panoptic segmentation methods

DeeperLab [89] 32.0 - - - 55.3
Panoptic-DeepLab (Xception-71 [127], [128]) [78] 46.7M 1.24T 37.7 30.4 47.4 14.9 55.4
Panoptic-DeepLab (Xception-71 [127], [128]) [78] ✓ 46.7M 31.35T 40.3 33.5 49.3 17.2 56.8
Panoptic-DeepLab (HRNet-W48 [129]) [78] ✓ 71.7M 58.47T 39.3 - - 17.2 55.4
Panoptic-DeepLab (Auto-XL++ [60]) [78] ✓ 72.2M 60.55T 40.3 - - 16.9 57.6

Axial-DeepLab-L 44.9M 1.55T 40.1 32.7 49.8 16.7 57.6
Axial-DeepLab-L ✓ 44.9M 39.35T 41.1 33.4 51.3 17.2 58.4

3.4.4 Cityscapes

Val set. In Table 3.5, we report our Cityscapes validation set results. Without using extra

data (i.e., only Cityscapes fine annotation), our Axial-DeepLab achieves 65.1% PQ, which

is 1% better than the current best bottom-up Panoptic-DeepLab [78] and 3.1% better than

proposal-based AdaptIS [88]. When using extra data (e.g., Mapillary Vistas [74]), our

multi-scale Axial-DeepLab-XL attains 68.5% PQ, 1.5% better than Panoptic-DeepLab [78]

and 3.5% better than Seamless [81]. Our instance segmentation and semantic segmentation

results are respectively 1.7% and 1.5% better than Panoptic-DeepLab [78].

Test set. Table 3.6 shows our test set results. Without extra data, Axial-DeepLab-XL attains

62.8% PQ, setting a new state-of-the-art result. Our model further achieves 66.6% PQ, 39.6%
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Table 3.5. Cityscapes val set. MS: Multi-scale inputs. MV: Mapillary Vistas

Method Extra Data MS PQ AP mIoU

AdaptIS [88] ✓ 62.0 36.3 79.2

SSAP [90] ✓ 61.1 37.3 -
Panoptic-DeepLab [78] 63.0 35.3 80.5
Panoptic-DeepLab [78] ✓ 64.1 38.5 81.5

Axial-DeepLab-L 63.9 35.8 81.0
Axial-DeepLab-L ✓ 64.7 37.9 81.5
Axial-DeepLab-XL 64.4 36.7 80.6
Axial-DeepLab-XL ✓ 65.1 39.0 81.1

SpatialFlow [125] COCO ✓ 62.5 - -
Seamless [81] MV 65.0 - 80.7

Panoptic-DeepLab [78] MV 65.3 38.8 82.5
Panoptic-DeepLab [78] MV ✓ 67.0 42.5 83.1

Axial-DeepLab-L MV 66.5 40.2 83.2
Axial-DeepLab-L MV ✓ 67.7 42.9 83.8
Axial-DeepLab-XL MV 67.8 41.9 84.2
Axial-DeepLab-XL MV ✓ 68.5 44.2 84.6
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Table 3.6. Cityscapes test set. C: Cityscapes coarse annotation. V: Cityscapes video. MV:

Mapillary Vistas

Method Extra Data PQ AP mIoU

GFF-Net [130] - - 82.3
Zhu et al. [131] C, V, MV - - 83.5

AdaptIS [88] - 32.5 -
UPSNet [86] COCO - 33.0 -
PANet [132] COCO - 36.4 -
PolyTransform [133] COCO - 40.1

SSAP [90] 58.9 32.7 -
Li et al. [87] 61.0 - -
Panoptic-DeepLab [78] 62.3 34.6 79.4
TASCNet [83] COCO 60.7 - -
Seamless [81] MV 62.6 - -
Li et al. [87] COCO 63.3 - -
Panoptic-DeepLab [78] MV 65.5 39.0 84.2

Axial-DeepLab-L 62.7 33.3 79.5
Axial-DeepLab-XL 62.8 34.0 79.9
Axial-DeepLab-L MV 65.6 38.1 83.1
Axial-DeepLab-XL MV 66.6 39.6 84.1
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AP, and 84.1% mIoU with Mapillary Vistas pretraining. Note that Panoptic-DeepLab [78]

adopts the trick of output stride 8 during inference on test set, making their M-Adds

comparable to our XL models.

3.4.5 Ablation Studies

We perform ablation studies on Cityscapes validation set.

Importance of Position-Sensitivity and Axial-Attention. In Table 3.1, we experiment

with attention models on ImageNet. In this ablation study, we transfer them to Cityscapes

segmentation tasks. As shown in Table 3.7, all variants outperform ResNet-50 [10]. Position-

sensitive attention performs better than previous self-attention [71], which aligns with

ImageNet results in Table 3.1. However, employing axial-attention, which is on-par

with position-sensitive attention on ImageNet, gives more than 1% boosts on all three

segmentation tasks (in PQ, AP, and mIoU), without ASPP, and with fewer parameters

and M-Adds, suggesting that the ability to encode long range context of axial-attention

significantly improves the performance on segmentation tasks with large input images.

Table 3.7. Ablating self-attention variants on Cityscapes val set. ASPP: Atrous spatial

pyramid pooling. PS: Our position-sensitive self-attention

Backbone ASPP PS Params M-Adds PQ AP mIoU

ResNet-50 [10] (our impl.) 24.8M 374.8B 58.1 30.0 73.3
ResNet-50 [10] (our impl.) ✓ 30.0M 390.0B 59.8 32.6 77.8
Attention [71] (our impl.) 17.3M 317.7B 58.7 31.9 75.8
Attention [71] (our impl.) ✓ 22.5M 332.9B 60.9 30.0 78.2

PS-Attention ✓ 17.3M 326.7B 59.9 32.2 76.3
PS-Attention ✓ ✓ 22.5M 341.9B 61.5 33.1 79.1

Axial-DeepLab-S ✓ 12.1M 220.8B 62.6 34.9 80.5

Axial-DeepLab-M ✓ 25.9M 419.6B 63.1 35.6 80.3
Axial-DeepLab-L ✓ 44.9M 687.4B 63.9 35.8 81.0
Axial-DeepLab-XL ✓ 173.0M 2446.8B 64.4 36.7 80.6
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Importance of Axial-Attention Span: In Table 3.8, we vary the span m (i.e., spatial

extent of local regions in an axial block), without ASPP. We observe that a larger span

consistently improves the performance at marginal costs.

Table 3.8. Varying axial-attention span on Cityscapes val set

Backbone Span Params M-Adds PQ AP mIoU

ResNet-101 - 43.8M 530.0B 59.9 31.9 74.6

Axial-ResNet-L 5 × 5 44.9M 617.4B 59.1 31.3 74.5
Axial-ResNet-L 9 × 9 44.9M 622.1B 61.2 31.1 77.6
Axial-ResNet-L 17 × 17 44.9M 631.5B 62.8 34.0 79.5
Axial-ResNet-L 33 × 33 44.9M 650.2B 63.8 35.9 80.2
Axial-ResNet-L 65 × 65 44.9M 687.4B 64.2 36.3 80.6

3.5 Conclusion and Discussion

In this chapter, we have shown the effectiveness of proposed position-sensitive axial-

attention on image classification and segmentation tasks. On ImageNet, our Axial-ResNet,

formed by stacking axial-attention blocks, achieves state-of-the-art results among stand-

alone self-attention models. We further convert Axial-ResNet to Axial-DeepLab for bottom-

up segmentation tasks, and also show state-of-the-art performance on several benchmarks,

including COCO, Mapillary Vistas, and Cityscapes. We hope our promising results could

establish that axial-attention is an effective building block for modern computer vision

models.

Our method bears a similarity to decoupled convolution [134], which factorizes a

depthwise convolution [120], [127], [135] to a column convolution and a row convolution.

This operation could also theoretically achieve a large receptive field, but its convolutional

template matching nature limits the capacity of modeling multi-scale interactions. Another

related method is deformable convolution [124], [136], [137], where each point attends to a

few points dynamically on an image. However, deformable convolution does not make
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use of key-dependent positional bias or content-based relation. In addition, axial-attention

propagates information densely, and more efficiently along the height- and width-axis

sequentially.

Although our axial-attention model saves M-Adds, it runs slower than convolutional

counterparts, as also observed by [71]. This is due to the lack of specialized kernels on

various accelerators for the time being. This might well be improved if the community

considers axial-attention as a plausible direction.
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Chapter 4

MaX-DeepLab: End-to-End Panoptic
Segmentation with Mask Transformers

This chapter extends the attention mechanism from pixel space to object mask space.

4.1 Introduction

Anchor
Regression

Anchor
Classification

Box-based
Segmentation

Box
Detection

Semantic
Segmentation

Instance
Segmentation

Panoptic
Segmentation

Ours

Previous Methods (Panoptic-FPN)

Figure 4.1. Our method predicts panoptic segmentation masks directly from images,

while previous methods (Panoptic-FPN as an example) rely on a tree of surrogate sub-

tasks. Panoptic segmentation masks are obtained by merging semantic and instance

segmentation results. Instance segmentation is further decomposed into box detection and

box-based segmentation, while box detection is achieved by anchor regression and anchor

classification.
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(a) Our MaX-DeepLab

51.1 PQ (box-free)

(b) Axial-DeepLab [2]

43.4 PQ (box-free)

(c) DetectoRS [138]

48.6 PQ (box-based)

Figure 4.2. A case study for our method and state-of-the-art box-free and box-based methods.

(a) Our end-to-end MaX-DeepLab correctly segments a dog sitting on a chair. (b) Axial-

DeepLab [2] relies on a surrogate sub-task of regressing object center offsets [78]. It fails

because the centers of the dog and the chair are close to each other. (c) DetectoRS [138]

classifies object bounding boxes, instead of masks, as a surrogate sub-task. It filters out the

chair mask because the chair bounding box has a low confidence.
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The goal of panoptic segmentation [76] is to predict a set of non-overlapping masks

along with their corresponding class labels. Modern panoptic segmentation methods

address this mask prediction problem by approximating the target task with multiple

surrogate sub-tasks. For example, Panoptic-FPN [80] adopts a ‘box-based pipeline’ with

three levels of surrogate sub-tasks, as demonstrated in a tree structure in Figure 4.1. Each

level of this proxy tree involves manually-designed modules, such as anchors [139], box

assignment rules [140], non-maximum suppression (NMS) [141], thing-stuff merging [86],

etc. Although there are good solutions [55], [79], [139] to individual surrogate sub-tasks

and modules, undesired artifacts are introduced when these sub-tasks fit into a pipeline

for panoptic segmentation, especially in the challenging conditions (Figure 4.2).

Method Anchor Center NMS Merge Box
-Free -Free -Free -Free -Free

Panoptic-FPN [80] ✗ ✓ ✗ ✗ ✗

UPSNet [86] ✗ ✓ ✗ ✓ ✗

DETR [142] ✓ ✓ ✓ ✓ ✗

Axial-DeepLab [2] ✓ ✗ ✗ ✗ ✓

MaX-DeepLab ✓ ✓ ✓ ✓ ✓

Table 4.1. Our end-to-end MaX-DeepLab dispenses with these common hand-designed

components necessary for existing methods.

Recent work on panoptic segmentation attempted to simplify this box-based pipeline.

For example, UPSNet [86] proproses a parameter-free panoptic head, permitting back-

propagation to both semantic and instance segmentation modules. Recently, DETR [142]

presents an end-to-end approach for box detection, which is used to replace detectors in

panoptic segmentation, but the whole training process of DETR still relies heavily on the

box detection task.

Another line of work made efforts to completely remove boxes from the pipeline, which

aligns better with the mask-based definition of panoptic segmentation. The state-of-the-art

method in this regime, Axial-DeepLab [2], along with other box-free methods [78], [89],
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[143], predicts pixel-wise offsets to pre-defined instance centers. But this center-based

surrogate sub-task makes it challenging to deal with highly deformable objects, or near-

by objects with close centers. As a result, box-free methods do not perform as well as

box-based methods on the challenging COCO dataset [15].

In this chapter, we streamline the panoptic segmentation pipeline with an end-to-end

approach. Inspired by DETR [142], our model directly predicts a set of non-overlapping

masks and their corresponding semantic labels with a mask transformer. The output masks

and classes are optimized with a panoptic quality (PQ) style objective. Specifically, inspired

by the definition of PQ [76], we define a similarity metric between two class-labeled masks

as the multiplication of their mask similarity and their class similarity. Our model is

trained by maximizing this similarity between ground truth masks and predicted masks

via one-to-one bipartite matching [142], [144], [145]. This direct modeling of panoptic

segmentation enables end-to-end training and inference, removing those hand-coded

priors that are necessary in existing box-based and box-free methods (Table 4.1). Our

method is dubbed MaX-DeepLab for extending Axial-DeepLab with a Mask Xformer.

In companion with direct training and inference, we equip our mask transformer

with a novel architecture. Instead of stacking a traditional transformer [61], [142] on

top of a Convolutional Neural Network (CNN) [49], we propose a dual-path framework

for combining CNNs with transformers. Specifically, we enable any CNN layer to read

and write a global memory, using our dual-path transformer block. This block supports

all types of attention between the CNN-path and the memory-path, including memory-

path self-attention (M2M), pixel-path axial self-attention (P2P), memory-to-pixel attention

(M2P), and finally pixel-to-memory attention (P2M). The transformer block can be inserted

anywhere in a CNN, enabling communication with the global memory at any layer.

Besides this communication module, our MaX-DeepLab employs a stacked-hourglass-

style decoder [37], [38], [146]. The decoder aggregates multi-scale features into a high

resolution output, which is then multiplied with the global memory feature, to form our
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mask set prediction. The classes for the masks are predicted with another branch of the

mask transformer.

We evaluate MaX-DeepLab on one of the most challenging panoptic segmentation

datasets, COCO [15], against the state-of-the-art box-free method, Axial-DeepLab [2],

and state-of-the-art box-based method, DetectoRS [147] (Figure 4.2). Our MaX-DeepLab,

without test time augmentation (TTA), achieves the state-of-the-art result of 51.3% PQ on

the test-dev set. This result surpasses Axial-DeepLab (with TTA) by 7.1% PQ in the box-free

regime, and outperforms DetectoRS (with TTA) by 1.7% PQ, bridging the gap between

box-based and box-free methods for the first time. For a fair comparison with DETR [142],

we also evaluate a lightweight model, MaX-DeepLab-S, that matches the number of

parameters and M-Adds of DETR. We observe that MaX-DeepLab-S outperforms DETR by

3.3% PQ on the val set and 3.0% PQ on the test-dev set. In addition, we perform extensive

ablation studies and analyses on our end-to-end formulation, model scaling, dual-path

architectures, and our loss functions. We also notice that the extra-long training schedule

of DETR [142] is not necessary for MaX-DeepLab.

To summarize, our contributions are four-fold:

• MaX-DeepLab is the first end-to-end model for panoptic segmentation, inferring

masks and classes directly without hand-coded priors like object centers or boxes.

• We propose a training objective that optimizes a PQ-style loss function via a PQ-style

bipartite matching between predicted masks and ground truth masks.

• Our dual-path transformer enables CNNs to read and write a global memory at any

layer, providing a new way of combining transformers with CNNs.

• MaX-DeepLab closes the gap between box-based and box-free methods and sets a

new state-of-the-art on COCO, even without using test time augmentation.
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4.2 Related Work

Transformers. Transformers [61], first introduced for neural machine translation, have

advanced the state-of-the-art in many natural language processing tasks [6], [105], [106].

Attention [102], as the core component of Transformers, was developed to capture both

correspondence of tokens across modalities [102] and long-range interactions in a single

context (self-attention) [61], [148]. Later, the complexity of transformer attention has been

reduced [149], [150], by introducing local [151] or sparse attention [152], together with a

global memory [153]–[156]. The global memory, which inspires our dual-path transformer,

recovers long-range context by propagating information globally.

Transformer and attention have been applied to computer vision as well, by combining

non-local modules [69], [108] with CNNs or by applying self-attention only [2], [71], [72].

Both classes of methods have boosted various vision tasks such as image classification [2],

[66], [71], [72], [107], [109], [157], object detection [67], [69], [71], [142], [158], [159], semantic

segmentation [68], [110]–[112], [160], [161], video recognition [69], [109], image genera-

tion [73], [104], and panoptic segmentation [2]. It is worth mentioning that DETR [142]

stacked a transformer on top of a CNN for end-to-end object detection.

Box-based panoptic segmentation. Most panoptic segmentation models, such as Panoptic

FPN [80], follow a box-based approach that detects object bounding boxes and predicts

a mask for each box, usually with a Mask R-CNN [79] and FPN [41]. Then, the instance

segments (‘thing’) and semantic segments (‘stuff’) [82] are fused by merging modules [81],

[83]–[85], [162] to generate panoptic segmentation. For example, UPSNet [86] developed

a parameter-free panoptic head, which facilitates unified training and inference [87].

Recently, DETR [142] extended box-based methods with its transformer-based end-to-end

detector. And DetectoRS [138] advanced the state-of-the-art with recursive feature pyramid

and switchable atrous convolution.
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Box-free panoptic segmentation. Contrary to box-based approaches, box-free methods

typically start with semantic segments [48], [55], [101]. Then, instance segments are

obtained by grouping ‘thing’ pixels with various methods, such as instance center regres-

sion [77], [89], [98]–[100], Watershed transform [93]–[95], Hough-voting [93], [96], [97], or

pixel affinity [88], [90]–[93]. Recently, Axial-DeepLab [2] advanced the state-of-the-art by

equipping Panoptic-DeepLab [78] with a fully axial-attention [73] backbone. In this chapter,

we extend Axial-DeepLab with a mask transformer for end-to-end panoptic segmentation.

4.3 Method

In this section, we describe how MaX-DeepLab directly predicts class-labeled masks for

panoptic segmentation, followed by the PQ-style loss used to train the model. Then, we

introduce our dual-path transformer architecture as well as the auxiliary losses that are

helpful in training.

4.3.1 MaX-DeepLab Formulation

The goal of panoptic segmentation is to segment the image I ∈ RH×W×3 into a set of

class-labeled masks:

{yi}K
i=1 = {(mi, ci)}K

i=1 . (4.1)

The K ground truth masks mi ∈ {0, 1}H×W do not overlap with each other, i.e., ∑K
i=1 mi ≤

1H×W , and ci denotes the ground truth class label of mask mi.

Our MaX-DeepLab directly predicts outputs in the exact same form as the ground truth.

MaX-DeepLab segments the image I into a fixed-size set of class-labeled masks:

{ŷi}N
i=1 = {(m̂i, p̂i(c))}N

i=1 . (4.2)

The constant size N of the set is much larger than the typical number of masks in an
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image [142]. The predicted masks m̂i ∈ [0, 1]H×W are softly exclusive to each other, i.e.,

∑N
i=1 m̂i = 1H×W , and p̂i(c) denotes the probability of assigning class c to mask m̂i. Possible

classes C ∋ c include thing classes, stuff classes, and a ∅ class (no object). In this way,

MaX-DeepLab deals with thing and stuff classes in a unified manner, removing the need

for merging operators.

Simple inference. End-to-end inference of MaX-DeepLab is enabled by adopting the

same formulation for both ground truth definition and model prediction. As a result, the

final panoptic segmentation prediction is obtained by simply performing argmax twice.

Specifically, the first argmax predicts a class label for each mask:

ĉi = arg max
c

p̂i(c) . (4.3)

And the other argmax assigns a mask-ID ẑh,w to each pixel:

ẑh,w = arg max
i

m̂i,h,w ,

∀h ∈ {1, 2, . . . , H}, ∀w ∈ {1, 2, . . . , W} .

(4.4)

In practice, we filter each argmax with a confidence threshold – Masks or pixels with

a low confidence are removed as described in Section 4.4. In this way, MaX-DeepLab

infers panoptic segmentation directly, dispensing with common manually-designed post-

processing, e.g., NMS and thing-stuff merging in almost all previous methods [80], [86].

Besides, MaX-DeepLab does not rely on hand-crafted priors such as anchors, object boxes,

or instance mass centers, etc.

4.3.2 PQ-Style Loss

In addition to simple inference, MaX-DeepLab enables end-to-end training as well. In

this section, we introduce how we train MaX-DeepLab with our PQ-style loss, which

draws inspiration from the definition of panoptic quality (PQ) [76]. This evaluation metric

of panoptic segmentation, PQ, is defined as the multiplication of a recognition quality (RQ)
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term and a segmentation quality (SQ) term:

PQ = RQ × SQ . (4.5)

Based on this decomposition of PQ, we design our objective in the same manner: First,

we define a PQ-style similarity metric between a class-labeled ground truth mask and a

predicted mask. Next, we show how we match a predicted mask to each ground truth

mask with this metric, and finally how to optimize our model with the same metric.

Mask similarity metric. Our mask similarity metric sim(·, ·) between a class-labeled

ground truth mask yi = (mi, ci) and a prediction ŷj = (m̂j, p̂j(c)) is defined as

sim(yi, ŷj) = p̂j(ci)⏞ ⏟⏟ ⏞
≈ RQ

×Dice(mi, m̂j)⏞ ⏟⏟ ⏞
≈ SQ

, (4.6)

where p̂j(ci) ∈ [0, 1] is the probability of predicting the correct class (recognition quality)

and Dice(mi, m̂j) ∈ [0, 1] is the Dice coefficient between a predicted mask m̂j and a ground

truth mi (segmentation quality). The two terms are multiplied together, analogous to the

decomposition of PQ.

This mask similarity metric has a lower bound of 0, which means either the class

prediction is incorrect, OR the two masks do not overlap with each other. The upper

bound, 1, however, is only achieved when the class prediction is correct AND the mask is

perfect. The AND gating enables this metric to serve as a good optimization objective for

both model training and mask matching.

Mask matching. In order to assign a predicted mask to each ground truth, we solve a

one-to-one bipartite matching problem between the prediction set {ŷi}N
i=1 and the ground

truth set {yi}K
i=1. Formally, we search for a permutation of N elements σ ∈ SN that best

assigns the predictions to achieve the maximum total similarity to the ground truth:

σ̂ = arg max
σ∈SN

K

∑
i=1

sim(yi, ŷσ(i)) . (4.7)

The optimal assignment is computed efficiently with the Hungarian algorithm [144],

following prior work [142], [145]. We refer to the K matched predictions as positive masks
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which will be optimized to predict the corresponding ground truth masks and classes. The

(N − K) masks left are negatives, which should predict the ∅ class (no object).

Our one-to-one matching is similar to DETR [142], but with a different purpose: DETR

allows only one positive match in order to remove duplicated boxes in the absence of

NMS, while in our case, duplicated or overlapping masks are precluded by design. But in

our case, assigning multiple predicted masks to one ground truth mask is problematic too,

because multiple masks cannot possibly be optimized to fit a single ground truth mask

at the same time. In addition, our one-to-one matching is consistent with the PQ metric,

where only one predicted mask can theoretically match (i.e., have an IoU over 0.5) with

each ground truth mask.

PQ-style loss. Given our mask similarity metric and the mask matching process based on

this metric, it is straight forward to optimize model parameters θ by maximizing this same

similarity metric over matched (i.e., positive) masks:

max
θ

K

∑
i=1

sim(yi, ŷσ̂(i)) ⇔ max
θ,σ∈SN

K

∑
i=1

sim(yi, ŷσ(i)) . (4.8)

Substituting the similarity metric (Equation (4.6)) gives our PQ-style objective Opos
PQ to be

maximized for positive masks:

max
θ

Opos
PQ =

K

∑
i=1

p̂σ̂(i)(ci)⏞ ⏟⏟ ⏞
≈ RQ

×Dice(mi, m̂σ̂(i))⏞ ⏟⏟ ⏞
≈ SQ

. (4.9)

In practice, we rewrite Opos
PQ into two common loss terms by applying the product rule of

gradient and then changing a probability p̂ to a log probability log p̂. The change from p̂

to log p̂ aligns with the common cross-entropy loss and scales gradients better in practice

for optimization:

Lpos
PQ =

K

∑
i=1

p̂σ̂(i)(ci)⏞ ⏟⏟ ⏞
weight

·
[︁
− Dice(mi, m̂σ̂(i))

]︁⏞ ⏟⏟ ⏞
Dice loss

+
K

∑
i=1

Dice(mi, m̂σ̂(i))⏞ ⏟⏟ ⏞
weight

·
[︁
− log p̂σ̂(i)(ci)

]︁⏞ ⏟⏟ ⏞
Cross-entropy loss

,

(4.10)
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where the loss weights are constants (i.e., no gradient is passed to them). This reformulation

provides insights by bridging our objective with common loss functions: Our PQ-style loss

is equivalent to optimizing a dice loss weighted by the class correctness and optimizing a

cross-entropy loss weighted by the mask correctness. The logic behind this loss is intuitive:

we want both of the mask and class to be correct at the same time. For example, if a mask

is far off the target, it is a false negative anyway, so we disregard its class. This intuition

aligns with the down-weighting of class losses for wrong masks, and vice versa.

Apart from the Lpos
PQ for positive masks, we define a cross-entropy term Lneg

PQ for negative

(unmatched) masks:

Lneg
PQ =

N

∑
i=K+1

[︁
− log p̂σ̂(i)(∅)

]︁
. (4.11)

This term trains the model to predict ∅ for negative masks. We balance the two terms by

α, as a common practice to weight positive and negative samples [163]:

LPQ = αLpos
PQ + (1 − α)Lneg

PQ , (4.12)

where LPQ denotes our final PQ-style loss.

4.3.3 MaX-DeepLab Architecture

As shown in Figure 4.3, MaX-DeepLab architecture includes a dual-path transformer, a

stacked decoder, and output heads that predict the masks and classes.

Dual-path transformer. Instead of stacking a transformer on top of a CNN [142], we

integrate the transformer and the CNN in a dual-path fashion, with bidirectional commu-

nication between the two paths. Specifically, we augment a 2D pixel-based CNN with a 1D

global memory of size N (i.e., the total number of predictions) and propose a transformer

block as a drop-in replacement for any CNN block or an add-on for a pretrained CNN

block. Our transformer block enables all four possible types of communication between

the 2D pixel-path CNN and the 1D memory-path: (1) the traditional memory-to-pixel

(M2P) attention, (2) memory-to-memory (M2M) self-attention, (3) pixel-to-memory (P2M)
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(a) Overview of MaX-DeepLab
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(b) Dual-path transformer block

Figure 4.3. (a) An image and a global memory are fed into a dual-path transformer, which

directly predicts a set of masks and classes (residual connections omitted). (b) A dual-path

transformer block is equipped with all 4 types of attention between the two paths.
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feedback attention that allows pixels to read from the memory, and (4) pixel-to-pixel

(P2P) self-attention, implemented as axial-attention blocks [2], [68], [73]. We select axial-

attention [2] rather than global 2D attention [66], [69], [142] for efficiency on high resolution

feature maps. One could optionally approximate the pixel-to-pixel self-attention with

a convolutional block that only allows local communication. This transformer design

with a memory path besides the main CNN path is termed dual-path transformer. Unlike

previous work [142], it allows transformer blocks to be inserted anywhere in the backbone

at any resolution. In addition, the P2M feedback attention enables the pixel-path CNN to

refine its feature given the memory-path features that encode mask information.

Formally, given a 2D input feature xp ∈ RĤ×Ŵ×din with height Ĥ, width Ŵ, channels

din, and a 1D global memory feature xm ∈ RN×din with length N (i.e., the size of the

prediction set). We compute pixel-path queries qp, keys kp, and values vp, by learnable

linear projections of the pixel-path feature map xp at each pixel. Similarly, qm, km, vm are

computed from xm with another set of projection matrices. The query (key) and value

channels are dq and dv, for both paths. Then, the output of feedback attention (P2M),

yp
a ∈ Rdout , at pixel position a, is computed as

yp
a =

N

∑
n=1

softmaxn
(︁
qp

a · km
n
)︁

vm
n , (4.13)

where the softmaxn denotes a softmax function applied to the whole memory of length N.

Similarly, the output of memory-to-pixel (M2P) and memory-to-memory (M2M) attention

ym
b ∈ Rdout , at memory position b, is

ym
b =

ĤŴ+N

∑
n=1

softmaxn
(︁
qm

b · kpm
n

)︁
vpm

n ,

kpm =

⎡⎢⎣kp

km

⎤⎥⎦ , vpm =

⎡⎢⎣vp

vm

⎤⎥⎦ ,

(4.14)

where a single softmax is performed over the concatenated dimension of size (ĤŴ,+N),

inspired by ETC [156].
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Stacked decoder. Unlike previous work [2], [78] that uses a light-weight decoder, we

explore stronger hourglass-style stacked decoders [37], [38], [146]. As shown in Figure 4.3,

our decoder is stacked L times, traversing output strides (4, 8, and 16 [60], [101]) multiple

times. At each decoding resolution, features are fused by simple summation after bilinear

resizing. Then, convolutional blocks or transformer blocks are applied, before the decoder

feature is sent to the next resolution. This stacked decoder is similar to feature pyramid

networks [41], [132], [138], [164] designed for pyramidal anchor predictions [22], but our

purpose here is only to aggregate multi-scale features, i.e., intermediate pyramidal features

are not directly used for prediction.

Output heads. From the memory feature of length N, we predict mask classes p̂(c) ∈
RN×|C| with two fully-connected layers (2FC) and a softmax. Another 2FC head predicts

mask feature f ∈ RN×D. Similarly, we employ two convolutions (2Conv) to produce a

normalized feature g ∈ RD× H
4 ×W

4 from the decoder output at stride 4. Then, our mask

prediction m̂ is simply the multiplication of transformer feature f and decoder feature g:

m̂ = softmaxN ( f · g) ∈ RN× H
4 ×W

4 . (4.15)

In practice, we use batch norm [123] on f and ( f · g) to avoid deliberate initialization, and

we bilinear upsample the mask prediction m̂ to the original image resolution. Finally, the

combination {(m̂i, p̂i(c))}N
i=1 is our mask transformer output to generate panoptic results

as introduced in Section 4.3.1.

Our mask prediction head is inspired by CondInst [165] and SOLOv2 [166], which

extend dynamic convolution [167], [168] to instance segmentation. However, unlike our

end-to-end method, these methods require hand-designed object centers and assignment

rules for instance segmentation, and a thing-stuff merging module for panoptic segmenta-

tion.
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4.3.4 Auxiliary Losses

In addition to the PQ-style loss (Section 4.3.2), we find it beneficial to incorporate auxiliary

losses in training. Specifically, we propose a pixel-wise instance discrimination loss that

helps cluster decoder features into instances. We also use a per-pixel mask-ID cross-entropy

loss that classifies each pixel into N masks, and a semantic segmentation loss. Our total

loss function thus consists of the PQ-style loss LPQ and these three auxiliary losses.

Instance discrimination. We use a per-pixel instance discrimination loss to help the

learning of the feature map g ∈ RD× H
4 ×W

4 . Given a downsampled ground truth mask

mi ∈ {0, 1} H
4 ×W

4 , we first compute a normalized feature embedding ti,: ∈ RD for each

annotated mask by averaging the feature vectors g:,h,w inside the mask mi:

ti,: =
∑h,w mi,h,w · g:,h,w

||∑h,w mi,h,w · g:,h,w||
, i = 1, 2, . . . , K . (4.16)

This gives us K instance embeddings {ti,:}K
i=1 representing K ground truth masks. Then,

we let each pixel feature g:,h,w perform an instance discrimination task, i.e., each pixel

should correctly identify which mask embedding (out of K) it belongs to, as annotated by

the ground truth masks. The contrastive loss at a pixel (h, w) is written as:

LInstDis
h,w = − log

∑K
i=1 mi,h,w exp (ti,: · g:,h,w/τ)

∑K
i=1 exp (ti,: · g:,h,w/τ)

, (4.17)

where τ denotes the temperature, and note that mi,h,w is non-zero only when pixel (h, w)

belongs to the ground truth mask mi. In practice, this per-pixel loss is applied to all

instance pixels in an image, encouraging features from the same instance to be similar and

features from different instances to be distinct, in a contrastive fashion, which is exactly

the property required for instance segmentation.

Our instance discrimination loss is inspired by previous works [169]–[174]. However,

they discriminate instances either unsupervisedly or with image classes [174], whereas we

perform a pixel-wise instance discrimination task, as annotated by panoptic segmentation

ground truth.
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Mask-ID cross-entropy. In Equation (4.4), we describe how we infer the mask-ID map

given our mask prediction. In fact, we can train this per-pixel classification task by applying

a cross-entropy loss on it. This is consistent with the literature [142], [175], [176] that uses a

cross-entropy loss together with a dice loss [177] to learn better segmentation masks.

Semantic segmentation. We also use an auxiliary semantic segmentation loss to help

capture per pixel semantic feature. Specifically, we apply a semantic head [78] on top of the

backbone if no stacked decoder is used (i.e., L = 0). Otherwise, we connect the semantic

head to the first decoder output at stride 4, because we find it helpful to separate the final

mask feature g with semantic segmentation.

4.4 Experiments

We report our main results on COCO, comparing with state-of-the-art methods. Then,

we provide a detailed ablation study on the architecture variants and losses. Finally, we

analyze how MaX-DeepLab works with visualizations.

Technical details. Most of our default settings follow Axial-DeepLab [2]. Specifically, we

train our models with 32 TPU cores for 100k (400k for main results) iterations (54 epochs),

a batch size of 64, Radam [118] Lookahead [119], a ‘poly’ schedule learning rate of 10−3

(3 × 10−4 for MaX-DeepLab-L), a backbone learning rate multiplier of 0.1, a weight decay

of 10−4, and a drop path rate [178] of 0.2. We resize and pad images to 641 × 641 [2], [78]

(1025 × 1025 for main results) for inference and M-Adds calculation. During inference, we

set masks with class confidence below 0.7 to void and filter pixels with mask-ID confidence

below 0.4. Finally, following previous work [2], [78], [86], we filter stuff masks with an area

limit of 4096 pixels, and instance masks with a limit of 256 pixels. In training, we set our

PQ-style loss weight (Equation (4.12), normalized by N) to 3.0, with α = 0.75. Our instance

discrimination uses τ = 0.3, and a weight of 1.0. We set the mask-ID cross-entropy weight

to 0.3, and semantic segmentation weight to 1.0. We use an output size N = 128 and
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D = 128 channels. We fill the initial memory with learnable weights [142] (more details

and architectures in Section C.6).

4.4.1 Main Results

We present our main results on COCO val set and test-dev set [15], with a small model,

MaX-DeepLab-S, and a large model, MaX-DeepLab-L.

MaX-DeepLab-S augments ResNet-50 [10] with axial-attention blocks [2] in the last two

stages. After pretaining, we replace the last stage with dual-path transformer blocks and

use an L = 0 (not stacked) decoder. We match parameters and M-Adds to DETR-R101 [142],

for fair comparison.

MaX-DeepLab-L stacks an L = 2 decoder on top of Wide-ResNet-41 [143], [179], [180].

And we replace all stride 16 residual blocks by our dual-path transformer blocks with wide

axial-attention blocks [2]. This large variant is meant to be compared with state-of-the-art

results.

Val set. In Table 4.2, we report our validation set results and compare with both box-based

and box-free panoptic segmentation methods. As shown in the table, our single-scale

MaX-DeepLab-S already outperforms all other box-free methods by a large margin of more

than 4.5 % PQ, no matter whether other methods use test time augmentation (TTA, usually

flipping and multi-scale) or not. Specifically, it surpasses single-scale Panoptic-DeepLab

by 8.7% PQ, and single-scale Axial-DeepLab by 5.0% PQ with similar M-Adds. We also

compare MaX-DeepLab-S with DETR [142], which is based on an end-to-end detector,

in a controlled environment of similar number of parameters and M-Adds. Our MaX-

DeepLab-S outperforms DETR [142] by 3.3% PQ in this fair comparison. Next, we scale

up MaX-DeepLab to a wider variant with stacked decoder, MaX-DeepLab-L. This scaling

further improves the single-scale performance to 51.1% PQ, outperforming multi-scale

Axial-DeepLab [2] by 7.2% PQ with similar inference M-Adds.
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Test-dev set. Our improvements on the val set transfers well to the test-dev set, as shown

in Table 4.3. On the test-dev set, we are able to compare with more competitive methods

and stronger backbones equipped with group convolution [8], [16], deformable convolu-

tion [124], or recursive backbone [138], [181], while we do not use these improvements in

our model. In the regime of no TTA, our MaX-DeepLab-S outperforms Axial-DeepLab [2]

by 5.4% PQ, and DETR [142] by 3.0% PQ. Our MaX-DeepLab-L without TTA further attains

51.3% PQ, surpassing Axial-DeepLab with TTA by 7.1% PQ. This result also outperforms

the best box-based method DetectoRS [138] with TTA by 1.7% PQ, closing the large gap

between box-based and box-free methods on COCO for the first time. Our MaX-DeepLab

sets a new state-of-the-art on COCO, even without using TTA.

Method Backbone TTA Params M-Adds PQ PQTh PQSt

Box-based panoptic segmentation methods

Panoptic-FPN [80] RN-101 40.3 47.5 29.5
UPSNet [86] RN-50 42.5 48.5 33.4
Detectron2 [147] RN-101 43.0 - -
UPSNet [86] RN-50 ✓ 43.2 49.1 34.1
DETR [142] RN-101 61.8M 314B1 45.1 50.5 37.0

Box-free panoptic segmentation methods

Panoptic-DeepLab [78] X-71 [127] 46.7M 274B 39.7 43.9 33.2
Panoptic-DeepLab [78] X-71 [127] ✓ 46.7M 3081B 41.2 44.9 35.7
Axial-DeepLab-L [2] AX-L [2] 44.9M 344B 43.4 48.5 35.6
Axial-DeepLab-L [2] AX-L [2] ✓ 44.9M 3868B 43.9 48.6 36.8

MaX-DeepLab-S MaX-S 61.9M 324B 48.4 53.0 41.5
MaX-DeepLab-L MaX-L 451M 3692B 51.1 57.0 42.2

Table 4.2. COCO val set. TTA: Test-time augmentation

1https://github.com/facebookresearch/detr
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Method Backbone TTA PQ PQTh PQSt

Box-based panoptic segmentation methods

Panoptic-FPN [80] RN-101 40.9 48.3 29.7
DETR [142] RN-101 46.0 - -
UPSNet [86] DCN-101 [124] ✓ 46.6 53.2 36.7
DetectoRS [138] RX-101 [16] ✓ 49.6 57.8 37.1

Box-free panoptic segmentation methods

Panoptic-DeepLab [78] X-71 [127], [128] ✓ 41.4 45.1 35.9
Axial-DeepLab-L [2] AX-L [2] 43.6 48.9 35.6
Axial-DeepLab-L [2] AX-L [2] ✓ 44.2 49.2 36.8

MaX-DeepLab-S MaX-S 49.0 54.0 41.6
MaX-DeepLab-L MaX-L 51.3 57.2 42.4

Table 4.3. COCO test-dev set. TTA: Test-time augmentation

4.4.2 Ablation Study

In this subsection, we provide more insights by teasing apart the effects of MaX-DeepLab

components on the val set. We first define a default baseline setting and then vary each

component of it: We augment Wide-ResNet-41 [143], [179], [180] by applying dual-path

transformer to all blocks at stride 16, enabling all four types of attention. For faster wall-

clock training, we use an L = 0 (not stacked) decoder and approximate P2P attention with

convolutional blocks.

Scaling. We first study the scaling of MaX-DeepLab in Table 4.4. We notice that replacing

convolutional blocks with axial-attention blocks gives the most improvement. Further

changing the input resolution to 1025 × 1025 improves the performance to 49.4% PQ, with

a short 100k schedule (54 epochs). Stacking the decoder L = 1 time improves 1.4% PQ, but

further scaling to L = 2 starts to saturate. Training with more iterations helps convergence,

but we find it not as necessary as DETR which is trained for 500 epochs.
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Res Axial L Iter Params M-Adds PQ PQTh PQSt

641 ✗ 0 100k 196M 746B 45.7 49.8 39.4
641 ✓ 0 100k 277M 881B 47.8 51.9 41.5

1025 ✗ 0 100k 196M 1885B 46.1 50.7 39.1
1025 ✓ 0 100k 277M 2235B 49.4 54.5 41.8

641 ✗ 1 100k 271M 1085B 47.1 51.6 40.3
641 ✗ 2 100k 347M 1425B 47.5 52.3 40.2

641 ✗ 0 200k 196M 746B 46.9 51.5 40.0
641 ✗ 0 400k 196M 746B 47.7 52.5 40.4

Table 4.4. Scaling MaX-DeepLab by using a larger input Resolution, replacing convolu-

tional blocks with Axial-attention blocks, stacking decoder L times, and training with

more Iterations.

P2M M2M Stride Params M-Adds PQ PQTh PQSt

✓ ✓ 16 196M 746B 45.7 49.8 39.4
✓ 16 188M 732B 45.0 48.9 39.2

✓ 16 196M 746B 45.1 49.3 38.9
16 186M 731B 44.7 48.5 39.0

✓ ✓ 16 & 8 220M 768B 46.7 51.3 39.7
✓ ✓ 16 & 8 & 4 234M 787B 46.3 51.1 39.0

Table 4.5. Varying transformer P2M feedback attention, M2M self-attention, and the Stride

where we apply the transformer.
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Figure 4.4. Training curves for (a) validation PQ, (b) average class confidence, p̂σ̂(i)(ci), of

matched masks, (c) average mask dice, Dice(mi, m̂σ̂(i)), of matched masks, (d) per-pixel

instance discrimination accuracy, and (e) per-pixel mask-ID prediction accuray.

Dual-path transformer. Next, we vary attention types of our dual-path transformer and

the stages (strides) where we apply transformer blocks. Note that we always apply M2P

attention that attaches the transformer to the CNN. And P2P attention is already ablated

above. As shown in Table 4.5, removing our P2M feedback attention causes a drop of 0.7%

PQ. On the other hand, we find MaX-DeepLab robust (-0.6% PQ) to the removal of M2M

self-attention. We attribute this robustness to our non-overlapping mask formulation. Note

that DETR [142] relies on M2M self-attention to remove duplicated boxes. In addition, it is

helpful (+1.0% PQ) to apply transformer blocks to stride 8 also, which is impossible for

DETR without our dual-path design. Pushing it further to stride 4 does not show more

improvements.
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Loss ablation. Finally, we ablate our PQ-style loss and auxiliary losses in Table 4.6. We

first switch our PQ-style similarity in Equation (4.6) from RQ × SQ to RQ + SQ, which

differs in the hungarian matching (Equation (4.7)) and removes dynamic loss weights in

Equation (4.10). We observe that RQ + SQ works reasonably well, but RQ × SQ improves

0.8% PQ on top of it, confirming the effect of our PQ-style loss in practice, besides its

conceptual soundness. Next, we vary auxiliary losses applied to MaX-DeepLab, without

tuning loss weights for remaining losses. Our PQ-style loss alone achieves a reasonable

performance of 39.5% PQ. Adding instance discrimination significantly improves PQTh,

showing the importance of a clustered feature embedding. Mask-ID prediction shares the

same target with the Dice term in Equation (4.10), but helps focus on large masks when the

Dice term is overwhelmed by small objects. Combining both of the auxiliary losses leads to

a large 5.6% PQ gain. Further multi-tasking with semantic segmentation improves 0.6% PQ,

because its class-level supervision helps stuff classes but not instance-level discrimination

for thing classes.

sim InstDis Mask Sem PQ PQTh PQSt SQ RQ

RQ × SQ ✓ ✓ ✓ 45.7 49.8 39.4 80.9 55.3
RQ + SQ ✓ ✓ ✓ 44.9 48.6 39.3 80.2 54.5

RQ × SQ ✓ ✓ 45.1 50.1 37.6 80.6 54.5
RQ × SQ ✓ 43.3 46.4 38.6 80.1 52.6
RQ × SQ ✓ 42.6 48.1 34.1 80.0 52.0
RQ × SQ 39.5 41.8 36.1 78.9 49.0

Table 4.6. Varying the similarity metric sim and whether to apply the auxiliary Instance

Discrimination loss, Mask-ID cross-entropy loss or the Semantic segmentation loss.

4.4.3 Analysis

We provide more insights of MaX-DeepLab by plotting our training curves and visualizing

the mask output head.
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Training curves. We first report the validation PQ curve in Figure 4.4a, with our default

ablation model. MaX-DeepLab converges quickly to around 46% PQ within 100k iterations

(54 epochs), 1/10 of DETR [142]. In Figure 4.4b and Figure 4.4c, we plot the characteristics of

all matched masks in an image. The matched masks tend to have a better class correctness

than mask correctness. Besides, we report per-pixel accuracies for instance discrimination

(Figure 4.4d) and mask-ID prediction (Figure 4.4e). We see that most pixels learn quickly

to find their own instances (out of K) and predict their own mask-IDs (out of N). Only 10%

of all pixels predict wrong mask-IDs, but they contribute to most of the PQ error.

(a) Original image (b) Decoder feature g

… …

Dog (thing)

Chair (thing)

Dining-table (thing)

Cake (thing)

Wall (stuff)

No object

(c) Transformer output

Figure 4.5. (b) Pixels of the same instance have similar colors (features), while pixels of

different instances have distinct colors. (c) The transformer predicts mask colors (features)

and classes.

Visualization. In order to intuitively understand the normalized decoder output g, the

transformer mask feature f , and how they are multiplied to generate our mask output m̂,

we train a MaX-DeepLab with D = 3 and directly visualize the normalized features as

RGB colors. As shown in Figure 4.5, the decoder feature g assigns similar colors (or feature

vectors) to pixels of the same mask, no matter the mask is a thing or stuff, while different

masks are colored differently. Such effective instance discrimination (as colorization)

facilitates our simple mask extraction with an inner product.
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4.5 Conclusion

In this chapter, we have shown for the first time that panoptic segmentation can be

trained end-to-end. Our MaX-DeepLab directly predicts masks and classes with a mask

transformer, removing the needs for many hand-designed priors such as object bounding

boxes, thing-stuff merging, etc. Equipped with a PQ-style loss and a dual-path transformer,

MaX-DeepLab achieves the state-of-the-art result on the challenging COCO dataset, closing

the gap between box-based and box-free methods for the first time.
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Part II

Self-Supervised Pre-Training of
Long-Range Models
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Chapter 5

CO2: Consistent Contrast for
Unsupervised Visual Representation
Learning

This chapter studies the label consistency issue in self-supervised contrastive learning

framework.

5.1 Introduction

Unsupervised visual representation learning has attracted increasing research interests

for it unlocks the potential of large-scale pre-training for vision models without human

annotation. Most of recent works learn representations through one or more pretext

tasks, in which labels are automatically generated from image data itself. Several early

methods propose pretext tasks that explore the inherent structures within a single image.

For example, by identifying spatial arrangement [182], orientation [183], or chromatic

channels [184], models learn useful representations for downstream tasks. Recently,

another line of works [169], [172], [173], [185]–[188], e.g. Momentum Contrast (MoCo),

falls within the framework of contrastive learning [189], which directly learns relations

of images as the pretext task. In practice, contrastive learning methods show better
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generalization in downstream tasks.

Although designed differently, most contrastive learning methods perform an instance

discrimination task, i.e., contrasting between image instances. Specifically, given a query

crop from one image, a positive sample is an image crop from the same image; negative

samples are crops randomly sampled from other images in the training set. Thus, the label

for instance discrimination is a one-hot encoding over the positive and negative samples.

This objective is to bring together crops from the same image and keep away crops from

different images in the feature space, forming an instance discrimination task.

However, the one-hot label used by instance discrimination might be problematic,

since it takes all the crops from other images as equally negative, which cannot reflect

the heterogeneous similarities between the query crop and each of them. For example,

some “negative” samples are semantically similar to the query, or even belong to the same

semantic class as the query. This is referred to as “class collision” in [190] and “sampling

bias” in [191]. The ignorance of the heterogeneous similarities between the query crop

and the crops from other images can thus raise an obstacle for contrastive methods to

learn a good representation. A recent work, supervised contrastive learning [174], fixes

this problem by using human annotated class labels and achieves strong classification

performance. However, in unsupervised representation learning, the human annotated

class labels are unavailable, and thus it is more challenging to capture the similarities

between crops.

In this chapter, we propose to view this instance discrimination task from the per-

spective of semi-supervised learning. The positive crop should be similar to the query

for sure since they are from the same image, and thus can be viewed as labeled. On the

contrary, the similarity between the query and each crop from other images is unknown,

or unlabeled. With the viewpoint of semi-supervised learning, we introduce Consistent

Contrast (CO2), a consistency regularization method which fits into current contrastive

learning framework. Consistency regularization [192] is at the core of many state-of-the-art
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semi-supervised learning algorithms [193]–[195]. It generates pseudo labels for unlabeled

data by relying on the assumption that a good model should output similar predictions

on perturbed versions of the same image. Similarly, in unsupervised contrastive learning,

since the query crop and the positive crop naturally form two perturbed versions of the

same image, we encourage them to have consistent similarities to each crop from other

images. Specifically, the similarity of the positive sample predicted by the model is taken

as a pseudo label for that of the query crop.

Our model is trained with both the original instance discrimination loss term and

the introduced consistency regularization term. The instance discrimination label and

the pseudo similarity label jointly construct a virtual soft label on-the-fly, and the soft

label further guides the model itself in a bootstrap manner. In this way, CO2 exploits the

consistency assumption on unlabeled data, mitigates the “class collision” effect introduced

by the one-hot labels, and results in a better visual representation. More importantly,

CO2 brings a new perspective of unsupervised visual representation learning. It relaxes

the stereotype that the pretext task can only be self-supervised which aims to construct

artificial labels for every sample, e.g., a specific degree of rotation [183], a configuration of

jigsaw puzzle [196], and a one-hot label that indicates whether a crop comes from the same

instance or not [169]. In contrast, the pretext task can also be self-semi-supervised, allowing

the task itself to be partially labeled. This relaxation is especially helpful when information

for artificial label construction is not enough and imposing a label is harmful, such as the

case of imposing the one-hot labels in instance discrimination.

This simple modification brings consistent gains on various evaluation protocols. We

first benchmark CO2 on ImageNet [197] linear classification protocol. CO2 improves

MoCo by 2.9% on top-1 accuracy. It also provides 3.8% and 1.1% top-5 accuracy gains

under the semi-supervised setting on ImageNet with 1% and 10% labels respectively,

showing the effectiveness of the introduced consistency regularization. We also evaluate

the transfer ability of the learned representations on three different downstream tasks:
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image classification, object detection and semantic segmentation. CO2 models consistently

surpass their MoCo counterparts, showing that CO2 can improve the generalization ability

of learned representation. Besides, our experiments on ImageNet-100 [187] demonstrate

the efficacy of CO2 on SimCLR [172], showing the generality of our method on different

contrastive learning frameworks.

5.2 Method

In this section, we begin by formulating current unsupervised contrastive learning as an

instance discrimination task. Then, we propose our consistency regularization term which

addresses the ignorance of the heterogeneous similarity between the query crop and each

crop of other images in the instance discrimination task.

5.2.1 Contrastive Learning

Contrastive learning [189] is recently adopted as an objective for unsupervised learning of

visual representations. Its goal is to find a parametric function fθ : RD → Rd that maps

an input vector x to a feature vector fθ(x) ∈ Rd with D ≫ d, such that a simple distance

measure (e.g., cosine distance) in the low-dimensional feature space can reflect complex

similarities in the high-dimensional input space.

For each input vector xi in the training set S, the similarity measure in the input space

is defined by a subset of training vectors Si ⊂ S, called similarity set. The sample xi

is deemed similar to samples in the similarity set Si, but dissimilar to samples in S \ Si.

Then, the contrastive objective encourages fθ(xj) to be close to fθ(xi) in the feature space if

xj ∈ Si, and otherwise to be distant.

By training with contrastive loss, the similarities defined by the similarity set determine

characteristics of the learned representation and the mapping function fθ. For example, if

the similarity is defined as samples from the same semantic class, then fθ will probably
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Figure 5.1. Illustration of (a) instance discrimination and (b) our consistency regularization.

q is a query and p is a positive key. Both are encoded from crops of the same image. {nk}K
k=1

are negative keys, encoded from random crops. In (a), the similarity is softmax cosine

distances between q and all keys. This similarity is optimized towards an artificial one-hot

label which identifies p among all keys. However, some negatives can be semantically

similar but not reflected by the one-hot label (e.g., the one rounded by a red box). In (b), our

proposed consistency regularization encourages the agreement between P, the positive-

negative similarity, and Q, the query-negative similarity, reflecting the heterogeneous

similarity of the query/positive to the negatives.
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learn invariances to other factors, e.g., object deformation. In the supervised setting,

this definition of similarity requires a large amount of human labeling. On the contrary,

unsupervised contrastive learning exploits similarities with no need of human labels. One

natural definition of unsupervised similarity is multiple views of an image, as explored by

many recent methods. For example, random augmented crops [169], [172], [173], [198],

[199] of an image could be defined as a similarity set. In this case, the contrastive objective

is effectively solving an instance discrimination task [169] as illustrated in Figure 5.1a.

The training of this instance discriminator involves randomly sampling a query crop

xq ∈ Si, a positive crop xp ∈ Si from the same image, and K negative crops {xk ∈ S \ Si}K
k=1

from other images. These K + 2 crops (the query, the positive, and K negatives) are encoded

with fθ respectively, q = fθ(xq), p = fθ(xp), nk = fθ(xk). Then, an effective contrastive loss

function, InfoNCE [186], is written as:

Lins = − log
exp(q · p/τins)

exp(q · p/τins) + ∑K
k=1 exp(q · nk/τins)

, (5.1)

where τins is a temperature hyper-parameter [200]. This loss can be interpreted as a cross

entropy loss that trains the model to discriminate the positive crop (labeled as 1) from

negative crops (labeled as 0) given the query crop. We denote this loss as Lins as it performs

an instance discrimination task. One direct instantiation of InfoNCE loss, represented by

SimCLR [172], formulates fθ as an end-to-end encoder. In this case, two crops of the same

image are exchangeable or symmetric to each other as both are encoded by fθ. The final

loss is also symmetric with either one of the two crops as the query and the other crop as

the positive. Another popular instantiation, represented by MoCo [173], encodes the query

with fθ and encodes the positive and the negatives with fθ′ which is the moving average

of fθ. In this case, only q can propagate gradients, which causes Lins to be asymmetric.
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5.2.2 Consistent Contrast

The one-hot labels used by InfoNCE loss is effective, showing good generalization ability

across tasks and datasets [172], [199]. Nevertheless, we argue that the hard, zero-one labels

is uninformative. Specifically, crops from other images are taken as equally negative as

they are all labeled as 0. This is contradictory to the fact that some so-called “negative”

crops can be similar or even in the same semantic class, especially when K is large. For

example, SimCLR [172] uses 16,382 negative samples in a batch, and MoCo [173], [199]

uses a memory bank of 65,536 features as negative samples. Even worse, the current

objective forces negatives to be as far from the query as possible, with larger weights for

closer negatives since they are “hard negatives”. However, these “hard negative” crops

in fact tend to be semantically close. These issues impair good representation learning

because the one-hot labels can not faithfully reflect the heterogeneous similarities between

the query crop and the crops from other images.

Although generating labels based on instance discrimination is trivial, revealing the

similarity between two arbitrary crops is exactly what we want to learn from unsupervised

pre-training. Therefore, the label of the similarity between the query crop and each crop

from other images is of little hope to get. This situation is similar to the usage of unlabeled

data in semi-supervised learning setting, in which consistency regularization is widely

used to propagate knowledge from labeled data to discover the structures in unlabeled

data. Inspired by this, we propose to encourage the consistency between the similarities

of crops from the same image, i.e., the query crop and the positive crop. We illustrate the

consistency regularization in Figure 5.1b.

First, we denote the similarity between the query q and the negatives ni(i ∈ {1, . . . , K})
as:

Q(i) =
exp(q · ni/τcon)

∑K
k=1 exp(q · nk/τcon)

, (5.2)

where τcon is also a temperature hyper-parameter. Q(i) is the probability that the query q
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selects ni as its match from {nk}K
k=1. Similarly, the similarity between the positive p and

the negatives is written as:

P(i) =
exp(p · ni/τcon)

∑K
k=1 exp(p · nk/τcon)

. (5.3)

We impose the consistency between the probability distributions P and Q by using sym-

metric Kullback-Leibler (KL) Divergence as the measure of disagreement:

Lcon =
1
2

DKL(P∥Q) +
1
2

DKL(Q∥P) . (5.4)

When p and q are encoded by the same end-to-end encoder fθ , it is natural to use symmetric

KL as their disagreement measure, since p and q are exchangeable. Even when p and ni

are encoded by the momentum encoder f ′θ, symmetric KL empirically works as well as

forward KL, i.e., DKL(P∥Q), as shown in Section 5.3.5. Thus, we use symmetric KL as a

unified objective for both cases.

The total loss is a weighted average of the original instance discrimination loss term

and the consistency regularization term:

L = Lins + αLcon , (5.5)

where α denotes the coefficient to balance the two terms. It is possible to merge the

two terms by creating a unique label containing information of both the one-hot label

and the pseudo similarity label, but we find the weighted average can already get good

performance and is easy to control.

The pseudo label is informative to reveal the similarity between the query q and each

ni, while the one-hot label is unable to provide such information, since it only describe

co-occurrence within one image. Note that, the pseudo label is also dynamic since the

embedding function fθ is updated in every training step, and thus generating better pseudo

labels during training. It indicates that the unsupervised embedding function and the soft

similarity labels give positive feedback to each other.

Our method is simple and low-cost. It captures the similarity to each ni while introduc-
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ing unnoticeable computational overhead with only one extra loss term computed. This

is unlike clustering based unsupervised learning methods, which are costly, since they

explicitly compute the similarity sets in the training set after every training epoch [201]–

[204].

5.3 Experiments

Herein, we first report our implementation details and benchmark the learned representa-

tions on ImageNet. Next, we examine how the unsupervised pre-trained models transfer

to other datasets and tasks. We then analyze the characteristics of our proposed method.

5.3.1 Linear Classification

Table 5.1. Linear classification protocol on ImageNet-1K

Pretext Task Arch. Head #epochs Top-1 Acc. (%)

ImageNet Classification R50 - 90 76.5

Exemplar [205] R50w3× - 35 46.0
Relative Position [182] R50w2× - 35 51.4
Rotation [183] Rv50w4× - 35 55.4
Jigsaw [196] R50 - 90 45.7

Methods based on contrastive learning:

InsDisc [169] R50 Linear 200 54.0
Local Agg. [202] R50 Linear 200 58.2
CPC v2 [186] R170w - ∼200 65.9
CMC [187] R50 Liner 240 60.0
AMDIM [185] AMDIMlarge - 150 68.1
PIRL [188] R50 Linear 800 63.6
SimCLR [172] R50 MLP 1000 69.3

MoCo [173] R50 Linear 200 60.6
MoCo [173] + CO2 R50 Linear 200 63.5
MoCo v2 [199] R50 MLP 200 67.5
MoCo v2 [199] + CO2 R50 MLP 200 68.0
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Table 5.2. Top-5 accuracy for semi-supervised learning on ImageNet

Pretext Task 1% labels 10% labels

Supervised Baseline 48.4 80.4

InsDisc [169] 39.2 77.4
PIRL [188] 57.2 83.8

MoCo [173] 62.4 84.1
MoCo [173] + CO2 66.2 85.2
MoCo v2 [199] 69.5 85.1
MoCo v2 [199] + CO2 70.6 85.4

Setup. We mainly evaluate CO2 based on MoCo [173] and MoCo v2 [199]. Both of them use

instance discrimination as pretext task, while MoCo v2 adopts more sophisticated design

choices on projection head architecture, learning rate schedule and data augmentation

strategy. We test CO2 on MoCo for its representativeness and simplicity. On MoCo v2, we

evaluate how CO2 is compatible with advanced design choices. We also demonstrate the

impact of CO2 on the end-to-end contrastive framework in Section 5.3.5.

The unsupervised training is performed on the train split of ImageNet-1K [197] without

using label information. We keep aligned every detail with our baseline MoCo to effectively

pin-point the contribution of our approach, except the number of GPUs (MoCo uses 8

GPUs while we use 4). A further search on MoCo-related hyper-parameters might lead to

better results of our method. For the hyper-parameters of CO2, we set τcon as 0.04, α as 10

for MoCo-based CO2, and τcon as 0.05, α as 0.3 for MoCo v2-based CO2. Please refer to the

appendix for more detailed implementation description.

5.3.2 Linear Classification

We first benchmark the learned representations on the common linear classification proto-

col. After the unsupervised pre-training stage, we freeze the backbone network including

the batch normalization parameters, and train a linear classifier consisting of a fully-

connected layer and a softmax layer on the 2048-D features following the global average
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pooling layer. Table 5.1 summaries the single-crop top-1 classification accuracy on the

validation set of ImageNet-1K. Our method consistently improves by 2.9% on MoCo and

by 0.5% on MoCo v2. We also list several top-performing methods in the table for refer-

ence. These results indicate that the representation is more linearly separable on ImageNet

with consistency regularization, since the consistency regularization mitigates the “class

collision” effect caused by semantically similar negative samples.

5.3.3 Semi-Supervised Learning

We next perform semi-supervised learning on ImageNet to evaluate the effectiveness of

the pre-trained network in data-efficient settings. Following [169], [172], [188], we finetune

the whole pre-trained networks with only 1% and 10% labels which are sampled in a

class-balanced way. Table 5.2 summaries the mean of the top-5 accuracy on the validation

set of ImageNet-1K over three runs. The results for MoCo and MoCo v2 are produced by

us using their officially released models. The proposed consistency regularization term can

provide 3.8% and 1.1% top-5 accuracy gains for MoCo with 1% and 10% labels respectively.

CO2 also improves from MoCo v2 by 1.1% top-5 accuracy with 1% labels, and by 0.3%

with 10% labels.

5.3.4 Transfer Learning

To further investigate the generalization ability of our models across different datasets and

tasks, we evaluate the transfer learning performance on PASCAL VOC [208] with three

typical visual recognition tasks, i.e., image classification, object detection and semantic

segmentation. Table 5.3 reports the transfer learning performance comparing with other

methods using ResNet-50. CO2 shows competitive or better performance comparing with

the corresponding baselines, In addition, it achieves better performance than state-of-the-

art unsupervised representation learning methods.
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Table 5.3. Transfer learning performance on PASCAL VOC datasets

Image Object Semantic
Classification Detection Segmentation

Pretext Task mAP AP50 APall AP75 mIoU

ImageNet Classification 88.0 81.3 53.5 58.8 74.4

Rotation [183] 63.9 72.5 46.3 49.3 -
Jigsaw [196] 64.5 75.1 48.9 52.9 -
InsDisc [169] 76.6 79.1 52.3 56.9 -
PIRL [188] 81.1 80.7 54.0 59.7 -
SimCLR [172]* - 81.8 55.5 61.4 -
BYOL [206]* - 81.4 55.3 61.1 -
SwAV [204]* - 81.5 55.4 61.4 -
SimSiam [207]* - 82.4 57.0 63.7 -

MoCo [173] - 81.5 55.9 62.6 72.5
MoCo [173] (our impl.) 79.7 81.6 56.2 62.4 72.6
MoCo [173] + CO2 82.6 81.9 56.0 62.6 73.3
MoCo v2 [199] 85.0 82.4 57.0 63.6 74.2
MoCo v2 [199] + CO2 85.2 82.7 57.2 64.1 74.7
* Results reported in SimSiam [207]

Image Classification. Following the evaluation setup in [209], we train a linear SVM [210]

on the frozen 2048-D features extracted after the global average pooling layer. The results

of MoCo are produced by us with their official models. In this case, CO2 is 2.9% better

than MoCo, and 0.2% than MoCo v2.

Object Detection. Following the detection benchmark set up in [173], we use Faster

R-CNN [139] object detector and ResNet-50 C4 [211] backbone, and all the layers are

finetuned including the batch normalization parameters. The numbers of our method are

averaged over three runs. Our reproduced results for MoCo are also listed in the table for

reference. CO2 provides 0.3% AP50 gains on both MoCo and MoCo v2.

Semantic Segmentation. We follow the settings in [173] for semantic segmentation. Re-

sults are average over three runs. Similarly, we include our reproduced results of MoCo as

a reference. The result of MoCo v2 is produced by us using its officially released model.
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CO2 gives 0.9% mIoU improvement upon MoCo, and 0.5% upon MoCo v2, which finally

surpasses its supervised counterpart.

The overall transfer learning improvements, though consistent, are smaller than linear

classification and semi-supervised learning. Similar observations have also been made in

[199]. We hypothesize that the current unsupervised contrastive methods, which bring

close different crops from the same image, reduce the representation’s sensitivity to location

which is useful for tasks like detection. It is still an open question which properties of an

unsupervised representation benefit the transfer ability to various downstream tasks.

5.3.5 Analysis

In this section, we study the characteristics of the proposed method on a smaller backbone

ResNet-18 and a smaller dataset ImageNet-100 due to the consideration of the computa-

tional resource. ImageNet-100 is firstly used in [187] and consists of 100 randomly selected

classes from all 1, 000 classes of ImageNet.
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Figure 5.2. Ablation on the effect of hyper-parameters.

Hyper-parameter. Our method introduces two new hyper-parameters, the coefficient of

consistency regularization term α, and its temperature τcon. In Figure 5.2, we show the

top-1 accuracy of a linear classifier on models pre-trained by CO2 with different hyper-

parameters. In Figure 5.2a, we fix the temperature τcon as 0.04 and vary the coefficient

α. The best coefficient is 10. We see that by using the consistency regularization term,
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Figure 5.3. Training curves of ResNet-18 on ImageNet-100.

the linear classification accuracy can be boosted from 63.6% to 69.2%. Increasing α to 20

and beyond causes performance degeneration. We hypothesize that the model is over-

regularized by the consistency loss, and thus it loses some discrimination among different

instances. In Figure 5.2b, we fix the coefficient to be 10 and varying the temperature.

As other consistency regularization methods (e.g., [194]), temperature τcon effectively

influences the quality of the learned representation, and the best to use is 0.04.

Training Curves. In Figure 5.3 we show the training curves of the instance discrimination

loss Lins, the consistency loss Lcon and the instance discrimination accuracy. Instance

discrimination accuracy represents the percent of query crops which successfully select

their corresponding positive crops, i.e., successfully identify their instances. MoCo is

trained with Lins only and its Lcon is just calculated out for comparison. We see that

Lins of MoCo drops quickly from the beginning at the cost of a jump of Lcon. As the

training proceeds, Lcon of MoCo decreases spontaneously, possibly because more semantic

knowledge has been learned, but it is still relatively high. Training with Lcon and Lins

together, i.e., MoCo + CO2, Lcon is kept very low from beginning, and Lcon increases

gradually since the model is trained to discriminate between images at the same time. At

the end of the training, Lcon stays much lower than Lcon of MoCo.

We also notice that with CO2, the instance discrimination accuracy drops from 97.57%
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to 95.26%. Although CO2 results in lower instance discrimination accuracy, it still does

better in the downstream classification task. The linear classification accuracy improves

from 63.6% to 69.2%, as shown in Figure 5.2a. It suggests again that there is a gap between

instance discrimination and the downstream tasks.

Comparison with Label Smoothing. With the consistency regularization term, our ap-

proach assigns soft pseudo labels to crops from other images. This looks similar to label

smoothing regularization on supervised classification [212], a useful trick which assigns a

small constant value to the labels of all the negative classes to avoid overconfidence. We

equip MoCo with label smoothing, i.e., assigning a small constant value to crops from other

images (the “negatives”). Surprisingly, it reports 61.2% linear classification accuracy, 2.4%

lower than MoCo alone. This suggests that assigning a constant value as label smoothing

can be harmful for unsupervised contrastive learning, since it ignores the heterogeneous

similarity relationship. And it is better to assign labels according to the similarities as our

consistency regularization.

Table 5.4. Linear classification accuracy (%) using an end-to-end encoder and with different

choices of Lcon. The results are summarized as mean and standard deviation over three

different runs.

Method No Lcon Forward KL Reverse KL Symmetric KL (CO2)

SimCLR 68.9±0.06 - - 72.3±0.14
MoCo 63.1±0.29 69.6±0.27 65.1±0.52 69.7±0.41

End-to-End Encoder. To further verify the effectiveness of the proposed consistency

regularization term on different contrastive learning frameworks, we apply CO2 to Sim-

CLR [172], a representative method with an end-to-end encoder (without a momentum

encoder). The results are presented in Table 5.4. On ImageNet-100 [187] with a ResNet-18,

SimCLR obtains 68.9% top-1 linear classification accuracy with batch size 128 and temper-

ature τins 0.1. Equipped with CO2 whose coefficient α is 0.07 and temperature τcon is 1.0,
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the linear classification accuracy is boosted to 72.3%. The improvement demonstrates that

CO2 can be applied to different unsupervised contrastive frameworks and improve the

quality of the learned representation regardless of whether using a momentum encoder or

not.

Varying the choices of Lcon. We ablate on different variants of Lcon (Eq. 5.4) on MoCo

including forward KL (DKL(P∥Q)), reverse KL (DKL(Q∥P)), and the objective of CO2,

i.e., symmetric KL. Each of models uses a coefficient α of 10 and a temperature τcon of

0.04. We present the linear classification accuracy in Table 5.4. Our CO2 (symmetric KL)

improves over the baseline MoCo by a large margin, from 63.1% to 69.7%. Forward KL

alone improves similarly to 69.6%. And reserve KL alone can also provide a nontrivial

2.0% gain in accuracy.

5.4 Related Work

Our method falls in the area of unsupervised visual representation learning, especially

for image data. In this section, we first revisit various design strategies of pretext tasks

for unsupervised learning. Then we elaborate on the pretext tasks based on contrastive

learning, which is the focus of this chapter. Next, we review the methods using consistency

regularization in semi-supervised learning, which inspire this chapter.

Unsupervised Learning and Pretext Tasks To learn from unlabeled image data, a wide

range of pretext tasks have been established. The models can be taught to specify the

relative position of a patch [182], solve spatial jigsaw puzzles [196], [213], colorize gray scale

images [184], [214], inpaint images [215], count objects [216], discriminate orientation [183],

iteratively cluster [201], [202], [217], generate images [218], [219], etc. [220] evaluates the

combination of different pretext tasks. [221] and [209] revisit and benchmark different

pretext tasks.
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Contrastive Learning Contrastive learning [189] recently puts a new perspective on the

design of pretext task and holds the key to most state-of-the-art methods. Most of them

perform an instance discrimination task while differ in i) the strategies to synthesize

positives and negatives, and ii) the mechanisms to manage a large amount of negatives.

The synthesizing can base on context with patches [186], [222], random resized crops with

data augmentation [169], [172], [173], [185], [198], jigsaw puzzle transformation [188] or

luminance-chrominance decomposition [187]. Regarding the mechanisms to maintain

negative features, some methods [169], [188] keep tracking the features of all images, some

directly utilize the samples within the minibatch [172], [187], [198], and [173] proposes to

use a momentum encoder. [206] recently proposes to only use positive examples without

negatives. Recently, [203] argues that the lack of semantic structure is one fundamental

weakness of instance discrimination, and proposes to generate prototypes by k-means

clustering. However, the computational overhead and the degeneration introduced by

clustering are difficult to address. [191] also points out the possible sampling bias of

instance discrimination, and proposes a debiased objective.

Consistency Regularization Consistency regularization is an important component of

many successful semi-supervised learning methods. It is firstly proposed in [192], encour-

aging similar predictions on perturbed versions of the same image. Besides the consistency

regularization on unlabeled data, the model is simultaneously trained with a supervised

loss on a small set of labeled data. Several works made improvements on the way of

perturbation, including using an adversarial transformation [223], using the prediction of a

moving average or previous model [224], [225], and using strong data augmentation [193].

Recently, several larger pipelines are proposed [194], [195], [226], in which consistency

regularization still serves as a core component.

The instance discrimination loss in unsupervised contrastive learning is analogous to

the supervised loss in semi-supervised learning, as both of them rely on some concrete

information, i.e., co-occurrence in one image and human annotation, respectively. Mean-
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while, CO2 on the similarities between crops is analogous to consistency regularization

on unlabeled samples of semi-supervised methods as their labels are both unknown. The

main difference, however, is that semi-supervised methods crucially rely on the supervised

loss to warm up the model, while there is no human annotation at all in unsupervised

contrastive learning. This chapter presents an example that a model learned completely

without human annotations can also generate surprisingly effective pseudo labels for

similarities between different crops and benefit from consistency regularization.

5.5 Discussion

Unsupervised visual representation learning has shown encouraging progress recently,

thanks to the introduction of instance discrimination and the contrastive learning frame-

work. However, in this chapter, we point out that instance discrimination is ignorant of the

heterogeneous similarities between image crops. We address this issue with a consistency

regularization term on the similarities between crops, inspired by semi-supervised learning

methods which impose consistency regularization on unlabeled data. In such a simple

way, the proposed CO2 consistently improves on supervised and semi-supervised image

classification. It also transfers to other datasets and downstream tasks.

More broadly, we encourage researchers to rethink label correctness in existing pretext

tasks. Taking instance discrimination as an example, we show that a pretext task itself

could be, in fact, a semi-supervised learning task. It might be harmful to think of the pretext

task as a simple pure supervised task by assuming the unknown labels are negatives. In

addition, this chapter relaxes the stereotype restriction that pretext task labels should

always be known and clean. We hope this relaxation can give rise to novel pretext tasks

which exploit noisy labels or partially-available labels, making a better usage of the data

without human annotation.
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Chapter 6

iBOT: Image BERT Pre-Training with
Online Tokenizer

This chapter describes a method that learns semantic representations by performing

masked image modeling with transformers.

6.1 Introduction

Masked Language Modeling (MLM), which first randomly masks and then reconstructs a

set of input tokens, is a popular pre-training paradigm for language models. The MLM pre-

trained Transformers [6] have demonstrated their scalability to large-capacity models and

datasets, becoming a de-facto standard for lingual tasks. However, its potential for Vision

Transformer (ViT), which recently started to revolutionize computer vision research [227],

[228], has been largely underexplored. Most popular unsupervised pre-training schemes

in vision deal with the global views [229], [230], neglecting images’ internal structures, as

opposed to MLM modeling local tokens. In this chapter, we seek to continue the success of

MLM and explore Masked Image Modeling (MIM) for training better Vision Transformers

such that it can serve as a standard component, as it does for NLP.

One of the most crucial components in MLM is the lingual tokenizer which splits lan-

guage into semantically meaningful tokens, e.g., WordPiece [62] in BERT. Similarly, the crux
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Figure 6.1. Linear probing accuracy on ImageNet. We compare iBOT with other unsuper-

vised baselines.

of MIM lies in a proper design of visual tokenizer, which transforms the masked patches to

supervisory signals for the target model, as shown in Figure 6.2. However, unlike lingual

semantics arising naturally from the statistical analysis of word frequency [231], visual

semantics cannot be extracted such easily due to the continuous property of images. Empir-

ically, visual semantics emerges progressively by bootstrapping online representation that

enforces a similarity of distorted image views [173], [204], [206]. This property intuitively

indicates a multi-stage training pipeline, where we need to first train an off-the-shelf

semantic-rich tokenizer before training the target model. However, since acquiring visual

semantics is a common end for both the tokenizer and target model, a single-stage training

pipeline where the tokenizer and target model can be jointly optimized awaits further

exploration.

Previous works partially tackle the above challenges. Several works use identity

mapping as the visual tokenizer, i.e., predicting the raw pixel values [215], [232]. Such

96



Vision
Transformer

Visual
Tokenizer

Original
Image

Masked
Image

patch-wise
prediction

Figure 6.2. Masked image modeling. Given a masked image, the vision transformer

learns to predict the output of a visual tokenizer.

paradigm struggles in semantic abstraction and wastes the capacity at modeling high-

frequency details, yielding less competitive performance in semantic understanding [233].

Recently, BEiT [234] proposes to use a pre-trained discrete VAE [235] as the tokenizer.

Though providing some level of abstraction, the discrete VAE is still found only to capture

low-level semantics within local details (as observed by Table 6.9). Moreover, the tokenizer

needs to be offline pre-trained with fixed model architectures and extra dataset [235],

which potentially limits its adapativity to perform MIM using data from different domains.

To this end, we present iBOT, short for image BERT pre-training with Online Tokenizer,

a new framework that performs MIM with a tokenizer handling above-mentioned chal-

lenges favorably. We motivate iBOT by formulating the MIM as knowledge distillation

(KD), which learns to distill knowledge from the tokenizer, and further propose to perform

self-distillation for MIM with the help of twin teacher as online tokenizer. The target

network is fed with a masked image while the online tokenizer with the original image.

The goal is to let the target network recover each masked patch token to its corresponding

tokenizer output. Our online tokenizer naturally resolves two major challenges. On the

one hand, our tokenizer captures high-level visual semantics progressively learned by

enforcing the similarity of cross-view images on class tokens. On the other hand, our tok-

enizer needs no extra stages of training as pre-processing setup since it is jointly optimized
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with MIM via momentum update.

The online tokenizer enables iBOT to achieve excellent performance for feature rep-

resentation. Specifically, iBOT advances ImageNet-1K classification benchmark under

k-NN, linear probing and fine-tuning protocols to 77.1%, 79.5%, 84.0% with ViT-Base/16

respectively, which is 1.0%, 1.3%, 0.4% higher than previous best results. When pre-trained

with ImageNet-22K, iBOT with ViT-L/16 achieves a linear probing accuracy of 81.7%

and a fine-tuning accuracy of 86.6%, which is 0.4% and 0.6% higher than previous best

results. Beyond that, the advancement is also valid when transferring to other datasets

or under semi-supervised and unsupervised classification settings. Of particular interest,

we have identified an emerging part-level semantics that can help the model with image

recognition both on global and local scales. We identify that the semantic patterns learned

in patch tokens, which sufficiently lack in the off-line tokenizer as in BEiT [234], helps

the model to be advanced in linear classification and robustness against common image

corruptions. When it is transferred to downstream tasks, we show that in downstream

tasks related to image classification, object detection, instance segmentation, and semantic

segmentation, iBOT surpasses previous methods with nontrivial margins. All of the evi-

dence demonstrates that iBOT has largely closed the gap of masked modeling pre-training

between language and vision Transformers.

6.2 Preliminaries

6.2.1 Masked Image Modeling as Knowledge Distillation

Masked image modeling (MIM), which takes a similar formulation as MLM in BERT,

has been proposed in several recent works [234], [236]. Specifically, for an image token

sequence x = {xi}N
i=1, MIM first samples a random mask m ∈ {0, 1}N according to

a prediction ratio r, where N is the number of tokens. The patch token xi where mi

being 1, denoted as x̃ ≜ {xi | mi = 1}N
i=1, are then replaced with a mask token e[MASK],
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yielding a corrupted image x̂ ≜ {x̂i = (1 − mi)xi + mie[MASK]}N
i=1. MIM is to recover the

masked tokens x̃ from the corrupted image x̂, i.e., to maximize: log q(x̃|x̂) ≈ ∑N
i=1 mi ·

log q(xi|x̂), where ≈ holds with an independence assumption that each masked token can

be reconstructed separately. In BEiT [234], q is modelled as a categorical distribution over

K categories and the task is to

min
θ

N

∑
i=1

miH
(︁

P(ci|x; ϕ), P(ci|x̂; θ)
)︁

, (6.1)

where a random variable ci ∈ {1, 2, . . . , K} denotes the category id of the i-th patch token,

P(·) is a probability distribution of ci over the K categories. H computes the cross entropy

between the two distributions H
(︁

P1(ci), P2(ci)
)︁
= −∑K

k=1 P1(ci = k) log P2(ci = k). And

ϕ is the parameter of a discrete VAE [235] that clusters image patches into K categories

and assigns each patch token a one-hot encoding identifying its category. We note this loss

is formulated similarly to knowledge distillation [237], where knowledge is distilled from

a pre-fixed tokenizer parameterized by ϕ to current model parameterized by θ.

6.2.2 Self-Distillation

Self-distillation, proposed recently in DINO [230], distills knowledge not from posterior

distributions P(c|x; ϕ) but past iterations of model itself P(c|x; θ′) and is cast as a discrim-

inative self-supervised objective. Given the training set I , an image x ∼ I is sampled

uniformly, over which two random augmentations are applied, yielding two distorted

views u and v. The two distorted views are then put through a teacher-student framework

to get the predictive categorical distributions from the [CLS] token: v[CLS]
t = P(c[CLS]|v; θ′)

and u[CLS]
s = P(c[CLS]|u; θ). The knowledge is distilled from teacher to student by mini-

mizing their cross-entropy, formulated as

L[CLS] = H
(︁

P(c[CLS]|v; θ′), P(c[CLS]|u; θ)
)︁

. (6.2)

The teacher and the student share the same architecture consisting of a backbone f (e.g., ViT)

and a projection head h[CLS]. The parameters of the student network θ are Exponentially

99



Moving Averaged (EMA) to the parameters of teacher network θ′. The loss is symmetrized

by averaging with another cross-entropy term between v[CLS]
s and u[CLS]

t .

6.3 iBOT

We motivate our method by identifying the similar formulation of Eq. (6.1) and Eq. (6.2). A

visual tokenizer parameterized by online θ′ instead of pre-fixed ϕ thus arises naturally. In

this section, we present iBOT, casting self-distillation as a token-generation self-supervised

objective and perform MIM via self-distillation.We illustrate the framework of iBOT in

Figure 6.3 and demonstrate the pseudo-code in Appendix E.1. In Section 6.3.2, we briefly

introduce the architecture and pre-training setup.

6.3.1 Framework
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Figure 6.3. Overview of iBOT framework, performing masked image modeling with an

online tokenizer. Given two views u and v of an image x, each view is passed through a

teacher network ht ◦ ft and a student network hs ◦ fs. iBOT minimizes two losses. The first

loss L[CLS] is self-distillation between cross-view [CLS] tokens. The second loss LMIM is

self-distillation between in-view patch tokens, with some tokens masked and replaced by

e[MASK] for the student network. The objective is to reconstruct the masked tokens with the

teacher networks’ outputs as supervision.

First, we perform blockwise masking [234] on the two augmented views u and v and
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obtain their masked views û and v̂. Taking û as an example for simplicity, the student

network outputs for the masked view û projections of its patch tokens ûpatch
s = P(ci|û; θ)

and the teacher network outputs for the non-masked view u projections of its patch tokens

upatch
t = P(ci|u; θ′). We here define the training objective of MIM in iBOT as

LMIM =
N

∑
i=1

miH
(︁

P(ci|u; θ′), P(ci|û; θ)
)︁

. (6.3)

We symmetrize the loss by averaging with another CE term between v̂patch
s and vpatch

t .

The backbone together with the projection head of teacher network hpatch
t ◦ ft is, there-

fore, a visual tokenizer that generates online token distributions for each masked patch

token. The tokenizer used in iBOT is jointly learnable to MIM objective without a need of

being pre-trained in an extra stage, a bonus feature of which is now its domain knowledge

can be distilled from the current dataset rather than fixed to the specified dataset.

To ensure that the online tokenizer is semantically-meaningful, we perform self-

distillation on [CLS] token of cross-view images such that visual semantics can be obtained

via bootstrapping, as achieved by the majority of the self-supervised methods [173], [206],

[230]. In practice, iBOT works with L[CLS] in Eq. (6.2) proposed in DINO [230], except

that now we have û[CLS]
s instead of u[CLS]

s as input for the student network. To further

borrow the capability of semantics abstraction acquired from self-distillatin on [CLS]

token, we share the parameters of projection heads for [CLS] token and patch tokens, i.e.,

h[CLS]s = hpatch
s , h[CLS]t = hpatch

t . We empirically find that it produces better results than

using separate heads.

Unlike tokenized words whose semantics are almost certain, image patch is ambiguous

in its semantic meaning. Therefore, tokenization as one-hot discretization can be sub-

optimal for images. In iBOT, we use the token distribution after softmax instead of the

one-hot token id as a supervisory signal, which plays an important role in iBOT pre-

training as shown in Table E.12.
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6.3.2 Implementation

Architecture. We use the Vision Transformers [228] and Swin Transformers [238] with

different amounts of parameters, ViT-S/16, ViT-B/16, ViT-L/16, and Swin-T/{7,14} as the

backbone f . For ViTs, /16 denotes the patch size being 16. For Swins, /{7, 14} denotes

the window size being 7 or 14. We pre-train and fine-tune the Transformers with 224-size

images, so the total number of patch tokens is 196. The projection head h is a 3-layer MLPs

with l2-normalized bottleneck following DINO [230]. Towards a better design to acquire

visual semantics, we studied different sharing strategies between projection heads h[CLS]

and hpatch, considering that semantics obtained in distillation on [CLS] token helps the

training of MIM on patch tokens. We empirically find that sharing the entire head prompts

the best performance. We set the output dimension of the shared head to 8192.

Pre-Training Setup. We by default pre-train iBOT on ImageNet-1K [197] training set

with AdamW [239] optimizer and a batch size of 1024. We pre-train iBOT using ViT-S/16

with 800 epochs, ViT-B/16 with 400 epochs, and Swin-T/{7,14} with 300 epochs. We also

pre-train on ImageNet-22K training set with ViT-B/16 for 80 epochs and ViT-L/16 for 50

epochs. The learning rate is linearly ramped up during the first 10 epochs to its base value

scaled with the total batch size: lr = 5e−4 × batch_size/256. We use random MIM, with

prediction ratio r set as 0 with a probability of 0.5 and uniformly sampled from range [0.1,

0.5] with a probability of 0.5. We sum L[CLS] and LMIM up without scaling. More ablations

on parameter setup are given in Appendix E.5.

6.4 Experiment

We first transfer iBOT to downstream tasks, following the standard evaluation protocols

adopted in prior arts, the details of which are in Appendix E.3. We then study several

interesting properties of Transformers pre-trained with iBOT. Finally, we give a brief

ablation study on the crucial composing of iBOT.
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6.4.1 Classification on ImageNet-1K

We consider five classification protocols on ImageNet-1K: k-NN, linear probing, fine-tuning,

semi-supervised learning, and unsupervised learning.

Table 6.1. ImageNet-1K k-NN and linear prob-

ing accuracy. † denotes using selective kernel.
‡ denotes pre-training on ImageNet-22K.

Method Arch. Par. im/s Epo.1 k-NN Lin.

SSL CNNs
MoCov3 RN50 23 1237 1600 - 74.6
SwAV RN50 23 1237 2400 65.7 75.3
DINO RN50 23 1237 3200 67.5 75.3
BYOL RN200w2 250 123 2000 73.9 79.6
SCLRv2 RN152w3† 794 46 2000 73.1 79.8

SSL Transformers
MoCov3 ViT-S/16 21 1007 1200 - 73.4
MoCov3 ViT-B/16 85 312 1200 - 76.7
SwAV ViT-S/16 21 1007 2400 66.3 73.5
DINO ViT-S/16 21 1007 3200 74.5 77.0
DINO ViT-B/16 85 312 1600 76.1 78.2
EsViT Swin-T/7 28 726 1200 75.7 78.1
EsViT Swin-T/14 28 593 1200 77.0 78.7
iBOT ViT-S/16 21 1007 3200 75.2 77.9
iBOT Swin-T/7 28 726 1200 75.3 78.6
iBOT Swin-T/14 28 593 1200 76.2 79.3
iBOT ViT-B/16 85 312 1600 77.1 79.5
iBOT ViT-L/16 307 102 1200 78.0 81.0
iBOT ‡ ViT-L/16 307 102 200 70.6 81.7

Table 6.2. ImageNet-1K fine-tuning.

Method Arch. Epo.1 Acc.

Rand. ViT-S/16 - 79.9
MoCov3 ViT-S/16 600 81.4
BEiT ViT-S/16 800 81.4
DINO ViT-S/16 3200 82.0
iBOT ViT-S/16 3200 82.3

Rand. ViT-B/16 - 81.8
MoCov3 ViT-B/16 600 83.2
BEiT ViT-B/16 800 83.4
DINO ViT-B/16 1600 83.6
iBOT ViT-B/16 1600 84.0

MoCov3 ViT-L/16 600 84.1
iBOT ViT-L/16 1200 84.7
BEiT ViT-L/16 800 85.2

Table 6.3. ImageNet-1K fine-tuning.

Pre-trained on ImageNet-22K.
Method Arch. Epo.1 Acc.

BEiT ViT-B/16 150 83.7
iBOT ViT-B/16 320 84.4

BEiT ViT-L/16 150 86.0
iBOT ViT-L/16 200 86.6

k-NN and Linear Probing. To evaluate the quality of pre-trained features, we either use

a k-nearest neighbor classifier (k-NN) or a linear classifier on the frozen representation.

We follow the evaluation protocols in DINO [230]. For k-NN evaluation, we sweep over

different numbers of nearest neighbors. For linear evaluation, we sweep over different

learning rates. In Table 6.1, our method reaches a k-NN accuracy of 75.2% and linear

probing accuracy 77.9% with ViT-S/16, and a k-NN accuracy 77.1% and linear probing

1Effective pre-training epochs accounting for actual trained images/views. See Appenix E.2 for details.
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accuracy 79.5% with ViT-B/16, achieving state-of-the-art performance. With Swin-T/{7,14},

iBOT achieves a linear probing accuracy of 78.6% and 79.3% respectively, surpassing

previous best result, 78.1% and 78.7% by EsViT [240]. With ViT-L/16 and ImageNet-22K

as pre-training data, iBOT further achieves a linear probing accuracy 81.7%, surpassing

previous state of the art, 81.3% with Swin-B/14 by EsViT. A linear probing accuracy of

79.5% with ViT-B/16 is comparable to 79.8% by SimCLRv2 with RN152 (3×)† but with

10× less parameters. We underline that the performance gain over DINO gets larger (0.9%

w/ ViT-S versus 1.3% w/ ViT-B) with more parameters, suggesting iBOT is more scalable

to larger models.

Fine-Tuning. We study the fine-tuning on ImageNet-1K and pre-training on ImageNet-

1K or ImageNet-22K. We focus on the comparison with self-supervised methods for

Transformers and its supervised baseline. Rand. denotes the supervised baselines reported

in [227]. As shown in Table 6.2, iBOT achieves an 82.3% and 84.0% top-1 accuracy with ViT-

S/16 and ViT-B/16, respectively, yielding a performance gain of 0.3% and 0.4% compared

to the previous state of the art, DINO. As shown in Table 6.3, iBOT pre-trained with

ImageNet-22K achieves 84.4% and 86.6% top-1 accuracy with ViT-B/16 and ViT-L/16,

respectively, outperforming ImageNet-22K pre-trained BEiT by 0.7% and 0.6%.

Table 6.4. Semi-supervised learning on

ImageNet-1K. 1% and 10% denotes label

fraction. SD denotes self-distillation.

Method Arch. 1% 10%

SimCLRv2 RN50 57.9 68.1
BYOL RN50 53.2 68.8
SwAV RN50 53.9 70.2
SimCLRv2+SD RN50 60.0 70.5
DINO ViT-S/16 60.3 74.3
iBOT ViT-S/16 61.9 75.1

Table 6.5. Unsupervised learning on

ImageNet-1K. † denotes k-means clustering

on frozen features.

Method Arch. ACC ARI NMI FMI

Self-label† RN50 30.5 16.2 75.4 -
InfoMin† RN50 33.2 14.7 68.8 -
SCAN RN50 39.9 27.5 72.0 -
DINO ViT-S/16 41.4 29.8 76.8 32.8
iBOT ViT-S/16 43.4 32.8 78.6 35.6
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Semi-Supervised and Unsupervised Learning. For semi-supervised learning, we focus

our comparison with methods following the unsupervised pre-train, supervised fine-tune

paradigm. As shown in Table 6.4, iBOT advances DINO by 1.6% and 0.8% using 1% and

10% data, respectively, suggesting a higher label efficiency. For unsupervised learning,

we use standard evaluation metrics, including accuracy (ACC), adjusted random index

(ARI), normalized mutual information (NMI), and Fowlkes-Mallows index (FMI). We

compare our methods to SimCLRv2 [241], Self-label [242], InfoMin [243], and SCAN [244].

As shown in Table 6.5. iBOT outperforms the previous state of the art by 2.0% in Acc and

1.8 in NMI, suggesting MIM helps the model learn stronger visual semantics on a global

scale.

6.4.2 Downstream Tasks

Table 6.6. Object detection (Det.) & instance segmentation (ISeg.) on COCO and

Semantic segmentation (Seg.) on ADE20K. We report the results of ViT-S/16 (left) and

ViT-B/16 (right). Seg.† denotes using a linear head for semantic segmentation.

Method Arch. Param. Det. ISeg. Seg.

APb APm mIoU

Sup. Swin-T 29 48.1 41.7 44.5
MoBY Swin-T 29 48.1 41.5 44.1
Sup. ViT-S/16 21 46.2 40.1 44.5
iBOT ViT-S/16 21 49.4 42.6 45.4

Method Det. ISeg. Seg.† Seg.

APb APm mIoU mIoU

Sup. 49.8 43.2 35.4 46.6
BEiT 50.1 43.5 27.4 45.8
DINO 50.1 43.4 34.5 46.8
iBOT 51.2 44.2 38.3 50.0

Object Detection and Instance Segmentation on COCO. Object detection and instance

segmentation require simultaneous object location and classification.We consider Cascade

Mask R-CNN [211], [245] that produces bounding boxes and instance masks simultane-

ously on COCO dataset [15]. Several recent works [238], [246] proposes Vision Transform-

ers that suit dense downstream tasks. To compare, we include the results of supervised

Swin-T [238] which shares approximate parameter numbers with ViT-S/16 and its self-

supervised counterpart MoBY [247] in Table 6.6. iBOT improves ViT-S’s APb from 46.2 to
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49.4 and APm from 40.1 to 42.6, surpassing both supervised Swin-T and its self-supervised

counterpart by a nontrivial margin. With ViT-B/16, iBOT achieves an APb of 51.2 and an

APm of 44.2, surpassing previous best results by a large margin.

Semantic Segmentation on ADE20K. Semantic segmentation can be seen as a pixel-level

classification problem. We mainly consider two segmentation settings on ADE20K dataset

[248]. First, similar to linear evaluation protocol in image classification, we evaluate the

models on the fixed patch features from the Transformer encoder and only fine-tune a linear

layer. This gives us a more explicit comparison of the quality of learned representations.

Second, we use the task layer in UPerNet [249] and fine-tune the entire network. We report

the mean intersection over union (mIoU) averaged over all semantic categories. From

Table 6.6, we can see that iBOT advances its supervised baseline with ViT-S/16 with a

large margin of 0.9 on mIoU, surpassing Swin-T. With ViT-B/16, iBOT advances previous

best methods DINO by 3.2 on mIoU with UperNet. We notice a performance drop of BEiT

using linear head, indicating BEiT’s features lack local semantics. As analyzed later, the

property of strong local semantics induces a 2.9 mIoU gain compared to the supervised

baseline with a linear head.

Table 6.7. Transfer learning by fine-tuning pre-trained models on different datasets. We

report Top-1 accuracy of ViT-S/16 (left) and ViT-B/16 (right).

Method Cif10 Cif100 iNa18 iNa19 Flwrs Cars

Rand. 99.0 89.5 70.7 76.6 98.2 92.1
BEiT 98.6 87.4 68.5 76.5 96.4 92.1
DINO 99.0 90.5 72.0 78.2 98.5 93.0
iBOT 99.1 90.7 73.7 78.5 98.6 94.0

Method Cif10 Cif100 iNa18 iNa19 Flwrs Cars

Rand. 99.0 90.8 73.2 77.7 98.4 92.1
BEiT 99.0 90.1 72.3 79.2 98.0 94.2
DINO 99.1 91.7 72.6 78.6 98.8 93.0
iBOT 99.2 92.2 74.6 79.6 98.9 94.3

Transfer Learning. We study transfer learning where we pre-train on ImageNet-1K and

fine-tune on several smaller datasets.We follow the training recipe and protocol used

in [228]. The results are demonstrated in Table 6.7. While the results on several datasets

(e.g., CIFAR10, CIFAR100, Flowers, and Cars) have almost plateaued, iBOT consistently
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performs favorably against other SSL frameworks, achieving state-of-the-art transfer re-

sults. We observe greater performance gain over DINO in larger datasets like iNaturalist18

and iNaturalist19, indicating the results are still far from saturation. We also find that with

larger models, we typically get larger performance gain compared with DINO (e.g., 1.7%

with ViT/S-16 versus 2.0% with ViT-B/16 on iNaturalist18, and 0.3% with ViT/S-16 versus

1.0% with ViT-B/16 on iNaturalist19).

6.4.3 Properties of ViT Trained with MIM

In the previous sections, we have shown the priority of iBOT on various tasks and datasets.

To reveal the strengths of iBOT pre-trained Vision Transformers, we analyze its property

from several aspects.

Figure 6.4. Pattern layout of patch tokens. Two left figures showcase patterns, headlight of

the vehicle and ear of the dog, that share part semantics. Two right figures showcase patterns,

stripped and curly surface, that share part textures.

What Patterns Does MIM Learn? The output from the projection head used for self-

distillation depicts for patch token a probabilistic distribution. To help understand what

patterns MIM induces to learn, we visualize several pattern layouts. We use 800-epoch

pre-trained ViT-S/16 and visualize the top-36 patches with the highest confidence on

ImageNet-1K validation set. We visualize a 5× context for each 16 × 16 patch (colored

orange). We observe the emergence of both high-level semantics and low-level details. As

shown in Figure 6.4, several patches are grouped with clear semantic meaning, e.g., headlight
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and dog’s ear. Such behavior stands a distinct contrast with the offline tokenizer used in

BEiT [234], which encapsulates mostly low-level details as shown in Figure E.10. Apart

from patch patterns that share high-level semantics, we also observe clusters accounting

for low-level textures, indicating the diversity of learned part patterns. The comparison

with previous work [230], [234] and the visualization of more pattern layouts are provided

in Appendix E.7.1.

How Does MIM Help Image Recognition? To illustrate how the property of better

part semantics can help image recognition, we use part-wise linear classification to study

the relationship between representations of patch tokens and [CLS] token. Specifically,

we average k patch tokens with the top-k highest self-attention scores. The results are

demonstrated in Figure 6.5. While the performance gap between DINO and iBOT is

only 0.9% in the standard setting (77.9% v.s. 77.0%) with [CLS] token, we observe that

iBOT outperforms DINO when using the patch representations directly. We observe that

using top-56 patch tokens yields an optimal result, and iBOT is 5.9% higher than DINO.

The performance gap becomes more prominent when using fewer patch tokens. When

using only the patch token with the highest self-attention score, iBOT advances by 17.9%.

These results reveal much semantic information in iBOT representations for patch tokens,

which helps the model to be more robust to the loss of local details and further boosts its

performance on image-level recognition.

Discriminative Parts in Self-Attention Map. To analyze, we visualize the self-attention

map with ViT-S/16. We choose [CLS] token as the query and visualize attention maps from

different heads of the last layer with different colors, as shown in Figure 6.6. Of particular

interest, we indicate that iBOT shows a solid ability to separate different objects or different

parts of one object apart. For example, in the leftmost figure, we observe iBOT fairly

distinct the bird from the tree branch. Also, iBOT focuses mainly on the discriminative

parts of the object (e.g., the wheel of the car, the beak of the bird). These properties are crucial
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Figure 6.5. Part-wise linear probing accu-

racy. Top-k tokens with the highest attention

scores are averaged for classification.

Figure 6.6. Visualization for self-attention

map. Self-attention map from multiple

heads are visualized with different color.

for iBOT to excel at image recognition, especially in complicated scenarios with object

occlusion or distracting instances. While these properties are not unique strengths brought

by MIM and we observe similar behaviors in DINO, we show in Appendix E.7.2 that iBOT

generally gives better visualized results.

6.4.4 Robustness

Table 6.8. Robustness evaluation of pre-trained models against background change,

occlusion, and out-of-distribution examples.

Method Background Change Clean Occlusion Out-of-Dist. Clean

O.F. M.S. M.R. M.N. N.F. O.BB. O.BT. IN-9 S.5 NS.5 IN-A IN-C ↓ IN

DINO 89.2 89.2 80.4 78.3 52.0 21.9 18.4 96.4 64.7 42.0 12.3 51.7 77.0
iBOT 90.9 89.7 81.7 80.3 53.5 22.7 17.4 96.8 65.9 43.4 13.8 48.1 77.9

The above-mentioned properties brought by MIM objective can improve the model’s

robustness to uncommon examples. We quantitatively benchmark robustness in terms of 3

aspects: background change, occlusion, and out-of-distribution examples, with a ViT-S/16

pre-trained for 800 epochs and then linearly evaluated for 100 epochs. Results are shown
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in Table 6.8. For background change, we study images under 7 types of change, detailed

in Appendix E.4. iBOT is more robust against background changes except for O.BT..

For occlusion, we study the linear accuracy with salient and non-salient patch dropping

following [250] with an information loss ratio of 0.5. iBOT has a smaller performance

drop under both settings. For out-of-distribution examples, we study natural adversarial

examples in ImageNet-A [251] and image corruptions in ImageNet-C [252]. iBOT has

higher accuracy on the ImageNet-A and a smaller mean corruptions error (mCE) on the

ImageNet-C.

6.4.5 Ablation Study on Tokenizer

In this section, we ablate the importance of using a semantically meaningful tokenizer

using a 300-epoch pre-trained ViT-S/16 with a prediction ratio r = 0.3 and without multi-

crop augmentation. Additional ablations are given in Appendix E.5. iBOT works with

self-distillation on [CLS] token with cross-view images (L[CLS]) to acquire visual semantics.

To verify, we conduct experiments to perform MIM without L[CLS] or with alternative

models as visual tokenizer. Specifically, ◦ denotes a standalone DINO and △ denotes a

pre-tranined DALL-E encoder [235]. We find that performing MIM without L[CLS] leads

Table 6.9. Effect of design choices of semantically meaningful tokenization.

Method LMIM L[CLS] SH k-NN Linear Fine-tuned

iBOT ✓ ✓ ✓ 69.1 74.2 81.5
✓ ✓ ✗ 69.0 73.8 81.5
✓ ✗ - 9.5 29.8 79.4
◦ ✗ - 44.3 60.0 81.7

BEiT △ ✗ - 6.9 23.5 81.4
DINO ✗ ✓ - 67.9 72.5 80.6
BEiT + DINO △ ✓ - 48.0 62.7 81.2

◦: standalone DINO (w/o mcrop, 300-epoch)
△: pre-trained DALL-E encoder

to undesirable results of 9.5% k-NN accuracy and 29.8% linear accuracy, indicating that
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visual semantics can hardly be obtained with only MIM. While semantics emerges with a

standalone DINO as a visual tokenizer, it is still far from reaching a decent result (44.3%

versus 69.1% in k-NN accuracy). Comparing iBOT with multi-tasking of DINO and BEiT

(DINO+BEiT), we see the strengths of merging the semantics acquired by self-distillation

with the visual tokenizer with an 11.5% advance in linear probing and 0.3% in fine-tuning.

Moreover, we empirically observe a performance improvement using a Shared projection

Head (SH) for [CLS] token and patch tokens, which shares the semantics acquired in [CLS]

token to MIM.

6.5 Related Work

Visual Representation Learning. Most self-supervised methods assume an augmentation

invariance of images and achieve so by enforcing similarity over distorted views of one im-

age while avoiding model collapse. Avoiding collapse can be achieved by noise-contrastive

estimation with negative samples [169], [172], [173], introducing asymmetric network [206],

[207], or explicitly enforcing the distribution of image distribution over the channel to be

uniform as well as one-hot [204], [230], [253]. In fact, the idea of simultaneously enforcing

distribution uniform and one-hot is hidden from earlier studies performing representation

learning via clustering [204], [254], [255], where the cluster assignment naturally meets

these two requirements. Other methods rely on handcrafted pretext tasks and assume the

image representation should instead be aware of image augmentation by solving image

jigsaw puzzle [196], [256], predicting rotation [257] or relative position [258].

Masked Prediction in Images. Predicting masked images parts is a popular self-supervised

pretext task drawing on the idea of auto-encoding and has been previously achieved by

either recovering raw pixels [215], [232], [259] or mask contrastive learning [186], [260].

Recently, it is formulated into MIM [234], [236] with a discrete VAE [235], [261] as vi-

sual tokenizer. As a counterpart of MLM in NLP, MIM eases masked prediction into
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a classification problem supervised by labels output from the tokenizer, mitigating the

problem of excessive focus on high-frequency details. Concurrently, masked image predic-

tion has been explored in the field of multi-modality, i.e., vision-language representation

learning. These methods operate on local regions instead of global images thus reply

on pre-trained detection models, i.e., Faster-RCNN [139] to propose regions of interest.

[262]–[264] perform masked region classification tasking the category distribution output

from the detection model as the ground-truth.

6.6 Conclusion

In this chapter, we study BERT-like pre-training for Vision Transformers and underline the

significance of a semantically meaningful visual tokenizer. We present a self-supervised

framework iBOT that performs masked image modeling via self-distillation with an online

tokenizer, achieving state-of-the-art results on downstream tasks related to classification,

object detection, instance segmentation, and semantic segmentation. Of particular interest,

we identify an emerging part-level semantics for models trained with MIM that helps for

not only recognition accuracy but also robustness against common image corruptions.

In the future, we plan to scale up iBOT to a larger dataset (e.g., ImageNet-22K) or larger

model size (e.g., ViT-L/16 and ViT-H/16) and investigate whether MIM can help Vision

Transformers more scalable to unlabelled data in the wild.
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Chapter 7

Conclusion

7.1 Summary

In this dissertation, I have presented a total of 5 research projects. All of them aim at

providing a path towards modeling long-range dependencies for 2D visual perception.

Part I describes neural architectures that are capable of modeling long-range relations ef-

fectively and efficiently. Chapter 2 improves convolutional neural networks with dynamic

scaling policies, augmenting all the layers with an Elastic module and demonstrating

model robustness to scale variations. Chapter 3 pushes the idea further by enabling global

receptive fields in all the layers, replacing all spatial convolutions with axial-attention

layers and capturing context with precise position. Chapter 4 further extends the attention

mechanism beyond pixel grids to segmentation masks by introducing a mask transformer

between pixels and masks. The transformer captures relations not only between two pixels,

but also between two object masks and between pixels and masks.

Part II is focused on self-supervised training of long-range models, mitigating the

data efficiency problem of learning long-range dependencies. Chapter 5 improves the

contrastive learning framework by formulating it as a semi-supervised learning prob-

lem and introducing a consistency term. Chapter 6 studies the pretext task, masked

image modeling, which is particularly suitable and beneficial to long-range models or
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transformers.

7.2 Future Directions

In this section, I will discuss a few future directions that I find interesting and promising

given the current progress of long-range architectures and training pipelines.

7.2.1 Dynamic Computation

Convolution is previously the default operator for 2D image models and is very efficient

to compute on full 2D grids. However, the information density on a 2D image is never a

uniform distribution, which leads to an intuitive idea of dropping computation on less

informative regions such as a white wall. This idea is not new but is less studied due to

its incompatibility with convolution which is efficient only on full 2D grids. But this is

not a problem any more with vision transformers that process images as a flattened 1D

sequence of tokens or patches. Processing half of the tokens or patches is still efficient with

transformers. In this way, we could either accelerate models or improve models with a

fixed computation budget, but how to do it efficiently in model training and inference

remains an open problem.

7.2.2 Long-Range Modeling for Videos

Video recognition, compared with 2D image recognition, involves an extra temporal

dimension beside the spatial axes. Mining information from the temporal axis is so

challenging that many current methods overfit a lot to spatial dimensions. In this case,

modeling long-range dependencies and extracting sparse but useful signals in the temporal

axis is a critical step towards overcoming such overfitting challenges. Apart from these

challenges and opportunities, videos also provide us with unique signals such as natural

correspondence between objects and frames that is otherwise difficult to obtain in 2D

114



natural images. Such correspondence could potentially be better leveraged by long-range

models, for example with masked video modeling tasks.

7.2.3 Relation Between Vision and Language

Modeling relations between image pixels, object masks, or video frames could eventually

saturate when the training signals for longer-range models become more and more sparse

and long-tail. A complementary source of signal lies in natural languages which are

naturally (or artificially) compositional. This source of signal is particularly scalable due to

the massive amount of image-text correspondence existing on the Internet, and the large

scale language models trained in a self-supervised manner. In this case, by bridging vision

and language modalities, for example with visual grounding, we might be able to exploit

the compositionality of natural languages to learn a more decoupled and generalizable

representation for future vision models.
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Appendix A

ELASTIC: Improving CNNs with
Dynamic Scaling Policies

A.1 sElastic (simple Elastic)

A simple way of augmenting current models with Elastic is directly replacing bottlenecks

by Elastic bottlenecks. This leads to models with less FLOPs and exactly the same number

of parameters, which we refer to as sElastic (simple Elastic). This is in comparison to

Elastic models that maintain the number of FLOPs and parameters. As shown in Table

A.1, sElastic already outperforms some of the original models, with less FLOPs. Note

that DLA-X60+sElastic in Table A.1 is equivalent to DLA-X60+Elastic (in Table 2.2 in the

original chapter), i.e. we do not add/remove layers in different scales.

A.2 Elastic Architecture Details

SElastic already outperforms original models. However, only applying downsamplings

equivalently shifts computation from low level to higher level, which could cause lack of

low level features to support high level processing. Also, sElastic reduces FLOPs so that

its accuracy is not fairly comparable with the original model. For these two reasons, we

rearrange computation distribution in each resolution, and this leads to our final Elastic
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Model # Params FLOPs Top-1 Top-5

ResNext50 25.0M 4.2B 22.2 -
ResNext50* 25.0M 4.2B 22.23 6.25
ResNext50+sElastic 25.0M 3.4B 22.03 6.07
ResNeXt50+Elastic 25.2M 4.2B 21.56 5.83

DLA-X60 17.6M 3.6B 21.8 -
DLA-X60* 17.6M 3.6B 21.92 6.03
DLA-X60+sElastic 17.6M 3.2B 21.25 5.71
DLA-X60+Elastic 17.6M 3.2B 21.25 5.71

DLA-X102 26.8M 6.0B 21.5 -
DLA-X102+sElastic 26.8M 5.0B 21.0 5.66
DLA-X102+Elastic 24.9M 6.0B 20.71 5.38

Table A.1. Error rates for sElastic on the ImageNet validation set. sElastic models with

reduced FLOPs already perform better than some of the original models. We also provide

the Elastic versions from the original chapter as a reference.

model.

Consider ResNeXt-50 as an example. The original model assigns [3, 4, 6, 3] blocks

respectively to [56, 28, 14, 7] four scales. As shown in Table A.3, sElastic simply replaces

original bottlenecks with Elastic bottlenecks. In Elastic, we roughly match the scale

distribution of the original model by assigning [6, 8, 5, 3] blocks to those resolutions, as

shown in Table A.3. Note that half of each block processes information at a higher level.

This modification also leads to matched number of parameters, and matched number of

FLOPs. For ResNeXt101, we use a block design of [12, 14, 20, 3]. DenseNet+Elastic and

DLA+Elastic architectures are shown respectively in Table A.4 and Table A.2. Note that

these block designs were picked to match the original number of parameters and FLOPs,

so we didn’t tune them as hyper-parameters. Tuning them could probably lead to even

lower error rates.
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Table A.2. DLA model architectures. Following DLA, we show our DLA classification

architectures in the table. Split32 means a ResNeXt bottleneck with 32 paths while Split50

means a ResNeXt bottleneck with 50 paths. Stages 3 to 6 show d-n where d is the aggrega-

tion depth and n is the number of channels.

Name Block Stage 3 Stage 4 Stage 5 Stage 6 Params. FLOPs

DLA-X60 Split32 1-128 2-256 3-512 1-1024 17.7 ×106 3.6 ×109

DLA-X60+Elastic Split32+Elastic 1-128 2-256 3-512 1-1024 17.7 ×106 3.2 ×109

DLA-X102 Split32 1-128 3-256 4-512 1-1024 26.8 ×106 6.0 ×109

DLA-X102+sElastic Split32+Elastic 1-128 3-256 4-512 1-1024 26.8 ×106 5.0 ×109

DLA-X102+Elastic Split50+Elastic 3-128 3-256 3-512 1-1024 24.9 ×106 6.0 ×109

stage ResNeXt50 ResNeXt50+sElastic ResNeXt50+Elastic
conv1 7×7, 64, stride 2, 3×3 max pool, stride 2

conv2
56×56

⎡⎣ 1×1, 128
3×3, 128, C=32

1×1, 256

⎤⎦× 3

⎡⎢⎢⎢⎢⎣
2×down, 28×28

1×1, 64 1×1, 64
3×3, 64, C=16 + 3×3, 64, C=16

1×1, 256 1×1, 256
2×up, 56×56

⎤⎥⎥⎥⎥⎦× 3

⎡⎢⎢⎢⎢⎣
2×down, 28×28

1×1, 64 1×1, 64
3×3, 64, C=16 + 3×3, 64, C=16

1×1, 256 1×1, 256
2×up, 56×56

⎤⎥⎥⎥⎥⎦× 6

conv3
28×28

⎡⎣ 1×1, 256
3×3, 256, C=32

1×1, 512

⎤⎦× 4

⎡⎢⎢⎢⎢⎣
2× down, 14 × 14

1×1, 128 1×1, 128
3×3, 128, C=16 + 3×3, 128, C=16

1×1, 512 1×1, 512
2× up, 28 × 28

⎤⎥⎥⎥⎥⎦× 4

⎡⎢⎢⎢⎢⎣
2× down, 14 × 14

1×1, 128 1×1, 128
3×3, 128, C=16 + 3×3, 128, C=16

1×1, 512 1×1, 512
2× up, 28 × 28

⎤⎥⎥⎥⎥⎦× 8

conv4
14×14

⎡⎣ 1×1, 512
3×3, 512, C=32

1×1, 1024

⎤⎦× 6

⎡⎢⎢⎢⎢⎣
2× down, 7 × 7

1×1, 256 1×1, 256
3×3, 256, C=16 + 3×3, 256, C=16

1×1, 1024 1×1, 1024
2× up, 14 × 14

⎤⎥⎥⎥⎥⎦× 6

⎡⎢⎢⎢⎢⎣
2× down, 7 × 7

1×1, 256 1×1, 256
3×3, 256, C=16 + 3×3, 256, C=16

1×1, 1024 1×1, 1024
2× up, 14 × 14

⎤⎥⎥⎥⎥⎦× 5

conv5
7×7

⎡⎣ 1×1, 1024
3×3, 1024, C=32

1×1, 2048

⎤⎦× 3

1×1 global average pool, 1000-d fc, softmax
Params. 25.0 ×106 25.0 ×106 25.2 ×106

FLOPs 4.2 ×109 3.4 ×109 4.2 ×109

Table A.3. ResNeXt50 vs. ResNeXt50+sElastic vs. ResNeXt50+Elastic. ResNeXt50+Elastic

employs two resolutions in each block, and keeps output resolution high for more blocks,

compared with ResNeXt50.
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stage DenseNet201 DenseNet201+Elastic
conv1 7×7, 64, stride 2, 3×3 max pool, stride 2

conv2
56×56

[︃
1×1, 128
3×3, 32

]︃
× 6

⎡⎢⎢⎣ 1×1, 64
3×3, 32 +

2×down, 28×28
1×1, 64
3×3, 32

2×up, 56×56

⎤⎥⎥⎦× 10

trans1 1×1 conv, 2×2 average pool, stride 2

conv3
28×28

[︃
1×1, 128
3×3, 32

]︃
× 12

⎡⎢⎢⎣ 1×1, 64
3×3, 32 +

2×down, 14×14
1×1, 64
3×3, 32

2×up, 28×28

⎤⎥⎥⎦× 20

trans2 1×1 conv, 2×2 average pool, stride 2

conv4
14×14

[︃
1×1, 128
3×3, 32

]︃
× 48

⎡⎢⎢⎣ 1×1, 64
3×3, 32 +

2×down, 7×7
1×1, 64
3×3, 32

2×up, 14×14

⎤⎥⎥⎦× 40

trans3 1×1 conv, 2×2 average pool, stride 2
conv5
7×7

[︃
1×1, 128
3×3, 32

]︃
× 32

[︃
1×1, 128
3×3, 32

]︃
× 30

1×1 global average pool, 1000-d fc, softmax
Params. 20.0 ×106 19.5 ×106

FLOPs 4.4 ×109 4.2 ×109

Table A.4. DenseNet201 vs. DenseNet201+Elastic. DenseNet+Elastic follows a similar

modification as ResNeXt+Elastic, i.e. two resolutions in each block and more blocks in

high resolutions.
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(a) Validation Images (b) RX101 (c) RX101+Elastic (d) Ground truth

Figure A.1. Semantic segmentation results on PASCAL VOC. Elastic improves most on

scale-challenging images.

A.3 Semantic Segmentation Results

Some visualizations of our semantic segmentation results are shown in Figure A.1, demon-

strating that Elastic segments scale-challenging objects well on PASCAL VOC.
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Appendix B

Axial-DeepLab: Stand-Alone
Axial-Attention for Panoptic
Segmentation

B.1 Runtime

In this section, we profile our Conv-Stem Axial-ResNet-L in a common setting: 224x224

feed-forward with batch size 1, on a V100 GPU, averaged over 5 runs. The time includes

input standardization, and the last projection to 1000 logits. Our model takes 16.54 ms.

For comparison, we list our TensorFlow runs of some popular models at hand (with

comparable flops). To provide more context, we take entries from [265] for reference (A

Titan X Pascal is used in [265], but the PyTorch code is more optimized). Our runtime

is roughly at the same level of ResNeXt-101 (32x4d), SE-ResNet-101, ResNet-152, and

DenseNet-201 (k=32).

Note that we directly benchmark with our code optimized for TPU execution, with

channels being the last dimension. Empirically, the generated graph involves transposing

between NCHW and NHWC, before and after almost every conv2d operation. (This effect

also puts Xception-71 at a disadvantage because of its separable conv design.) Further

optimizing this could lead to faster inference.
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Table B.1. Runtime of Axial-ResNet-L on a 224×224 image

Model Our Profile (ms) [265] (ms)

Axial-ResNet-L 16.54 -

Stand-Alone-L [71] 18.05 -
Xception-71 [101], [127] 24.85 -
ResNet-101 [10] 10.08 8.9
ResNet-152 [10] 14.43 14.31
ResNeXt-101 (32x4d) [16] - 17.05
SE-ResNet-101 [266] - 15.10
SE-ResNeXt-101 (32x4d) [266] - 24.96
DenseNet-201 (k=32) [11] - 17.15

We observe that our Conv-Stem Axial-ResNet-L runs faster than Conv-Stem Stand-

Alone-L [71], although we split one layer into two. This is because our axial-attention

makes better use of existing kernels:

• The width-axis attention is parallelizable over height-axis, i.e. this is a large batch of

1d row operations (the batch size is the height of the input).

• Axial attention avoids extracting 2d memory blocks with pads, splits and concatena-

tions, which are not efficient on accelerators.

B.2 Axial-Decoder

Axial-DeepLab employs dual convolutional decoders [78]. In this section, we explore a

setting with a single axial-decoder instead. In the axial-decoder module, we apply one

axial-attention block at each upsampling stage. In Figure B.1, we show an example axial-

decoder in Axial-DeepLab-L from output stride 8 to output stride 4. We apply three such

blocks, analogous to the three 5×5 convolutions in Panoptic-DeepLab [78].

Importance of Output Stride and Axial-Decoder: In Table B.2, we experiment with the

effect of output stride and axial-decoder (i.e., replacing dual decoders with axial-attention
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Figure B.1. An axial-decoder block. We augment an axial-attention block with up-

samplings, and encoder features

blocks). As shown in the table, our models are robust to output stride, and using axial-

decoder is able to yield similar results. Our simple axial-decoder design works as well as

dual convolutional decoders.

Table B.2. Ablating output strides and decoder types on Cityscapes val set. ASPP: Atrous

spatial pyramid pooling. OS: Output stride (i.e., the ratio of image resolution to final

feature resolution in backbone). AD: Use axial-decoder in Axial-DeepLab

Backbone ASPP OS AD Params M-Adds PQ AP mIoU

Xception-71 ✓ 16 46.7M 547.7B 63.2 35.0 80.2

Axial-ResNet-L 16 44.9M 687.4B 63.9 35.8 81.0
Axial-ResNet-L 32 45.2M 525.2B 63.9 36.3 80.9
Axial-ResNet-L 16 ✓ 45.4M 722.7B 63.7 36.9 80.7
Axial-ResNet-L 32 ✓ 45.9M 577.8B 64.0 37.1 81.0

B.3 COCO Visualization

In Figure B.2, we visualize some panoptic segmentation results on COCO val set. Our

Axial-DeepLab-L demonstrates robustness to occlusion, compared with Panoptic-DeepLab

(Xception-71).
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Original Image Axial-DeepLab Panoptic-DeepLab Ground Truth

Figure B.2. Visualization on COCO val set. Axial-DeepLab shows robustness to occlusion.

In row 1 and row 4, Axial-DeepLab captures the occluded left leg and the remote control

cable respectively, which are not even present in ground truth labels. In the last row,

Axial-DeepLab distinguishes one person occluding another correctly, whereas the ground

truth treats them as one instance
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In Figure B.3 and Figure B.4, we visualize the attention maps of our Axial-DeepLab-

L on COCO val set. We take a row of pixels, and visualize their column (height-axis)

attention in all 8 heads. Then, we take a column, and visualize their row attention. We

visualize a low level block (stage 3 block 2) and a high level block (stage 4 block 3), which

are respectively the first block and the last block with resolution 65×65, in the setting of

output stride 16. We notice that in our multi-head axial-attention, some heads learn to

focus on local details while some others focus on long range context. Additionally, we

find that some heads are able to capture positional information and some others learn to

correlate with semantic concepts

In Figure B.5, we compare Axial-DeepLab with Panoptic-DeepLab [78], in terms of

the three training loss functions, defined in Panoptic-DeepLab [78]. We observe that

Axial-DeepLab is able to fit data better, especially on the offset prediction task. This also

demonstrates the effectiveness of our position-sensitive attention design, and the long

range modeling ability of axial-attention.

B.4 Raw Data

In companion to Figure 3.3 of the main chapter where we compare parameters and M-Adds

against accuracy on ImageNet classification, we also show the performance of our models

in Table B.3.

In companion to Figure 3.4 of the main chapter where we demonstrate the relative

improvements of Axial-DeepLab-L over Panoptic-DeepLab (Xception-71) in our scale

stress test on COCO, we also show the raw performance of both models in Figure B.6.
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Original Image Panoptic Prediction

column head 1 column head 2 column head 3 column head 4

column head 5 column head 6 column head 7 column head 8

row head 1 row head 2 row head 3 row head 4

row head 5 row head 6 row head 7 row head 8

Figure B.3. Attention maps in block 2 of stage 3. Blue pixels are queries that we take,

and red pixels indicate the corresponding attention weights. We notice that column head

1 focuses on human heads, while column head 4 correlates with the field. Row head 6

focuses more on local regions whereas column head 5 pools all over the whole image
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Original Image Panoptic Prediction

column head 1 column head 2 column head 3 column head 4

column head 5 column head 6 column head 7 column head 8

row head 1 row head 2 row head 3 row head 4

row head 5 row head 6 row head 7 row head 8

Figure B.4. Attention maps in block 3 of stage 4. They focus more on long range context

than those in Figure B.3, although all of them have a global receptive field
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Figure B.5. Training loss on COCO. Equipped with position-sensitive axial-attention, our

Axial-DeepLab fits data distribution better than Panoptic-DeepLab [78], especially on the

task of predicting the offset to the object center, which requires precise and long range

positional information

Table B.3. ImageNet validation set results. Width: the width multiplier that scales the

models up. Full: Stand-alone self-attention models without spatial convolutions

Method Width Full Params M-Adds Top-1

Conv-Stem + PS-Attention 0.5 5.1M 1.2B 75.5
Conv-Stem + PS-Attention 0.75 10.5M 2.3B 77.4
Conv-Stem + PS-Attention 1.0 18.0M 3.7B 78.1
Conv-Stem + PS-Attention 1.25 27.5M 5.6B 78.5
Conv-Stem + PS-Attention 1.5 39.0M 7.8B 79.0

Conv-Stem + Axial-Attention 0.375 7.4M 1.8B 76.4
Conv-Stem + Axial-Attention 0.5 12.4M 2.8B 77.5
Conv-Stem + Axial-Attention 0.75 26.4M 5.7B 78.6
Conv-Stem + Axial-Attention 1.0 45.6M 9.6B 79.0

Full Axial-Attention 0.5 ✓ 12.5M 3.3B 78.1
Full Axial-Attention 0.75 ✓ 26.5M 6.8B 79.2
Full Axial-Attention 1.0 ✓ 45.8M 11.6B 79.3

128



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Testing Resolution Ratio

20

25

30

35

40

PQ
 (%

)

Axial-DeepLab-L
Panoptic-DeepLab

Figure B.6. Scale stress test on COCO val set
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Appendix C

MaX-DeepLab: End-to-End Panoptic
Segmentation with Mask Transformers

C.1 Panoptic Segmentation Results

Similar to the case study in Figure 4.2, we provide more panoptic segmentation results

of our MaX-DeepLab-L and compare them to the state-of-the-art box-free method, Axial-

DeepLab [2], the state-of-the-art box-based method, DetectoRS [138], and the first Detection

Transformer, DETR [142] in Figure C.1 and Figure C.2. MaX-DeepLab demonstrates ro-

bustness to the challenging cases of similar object bounding boxes and nearby objects with

close centers, while other methods make systematic mistakes because of their individual

surrogate sub-task design. MaX-DeepLab also shows exceptional mask quality, and per-

forms well in the cases of many small objects. Similar to DETR [142], MaX-DeepLab fails

typically when there are too many object masks.

C.2 Runtime

In Table C.1, we report the end-to-end runtime (i.e., inference time from an input image to

final panoptic segmentation) of MaX-DeepLab on a V100 GPU. All results are obtained

1https://github.com/facebookresearch/detr
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Original Image MaX-DeepLab-L Axial-DeepLab [2] DetectoRS [138] DETR [142] Ground Truth

Mask Transformer Box-Free Box-Based Box Transformer
51.1% PQ 43.4% PQ 48.6% PQ 45.1% PQ

MaX-DeepLab segments the baby with its occluded leg correctly. DetectoRS and DETR merge the two people into one instance,
probably because the two people have similar bounding boxes. In addition, DETR introduces artifacts around the head of the
horse.

MaX-DeepLab correctly segments all the boards, the zebras, and the people. All other methods fail in these challenging cases of
similar bounding boxes and nearby object centers.

MaX-DeepLab generates a high quality mask for the cat, arguably better than the ground truth. Axial-DeepLab predicts cat pixels
on the right of the image, as the center of the cat is close to the center of the bike. And DETR misses the cat and introduces artifacts.

MaX-DeepLab also performs well in the presence of many small instances.

Figure C.1. Comparing MaX-DeepLab with other representative methods on the COCO

val set. (Colors modified for better visualization).
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Method Backbone Input Size Runtime (ms) PQ [val] PQ [test]

Fast Regime

Panoptic-DeepLab [78] X-71 [127] 641×641 74 38.9 38.8
MaX-DeepLab-S MaX-S 641×641 67 46.4 46.7

Slow Regime

DETR [142] RN-101 1333×800 1281 45.1 46.0
Panoptic-DeepLab [78] X-71 [127] 1025×1025 132 39.7 39.6
MaX-DeepLab-S MaX-S 1025×1025 131 48.4 49.0

Table C.1. End-to-end runtime. PQ [val]: PQ (%) on COCO val set. PQ [test]: PQ (%) on

COCO test-dev set.

by (1) a single-scale input without flipping, and (2) built-in TensorFlow library without

extra inference optimization. In the fast regime, MaX-DeepLab-S takes 67 ms with a

typical 641×641 input. This runtime includes 5 ms of postprocessing and 15 ms of batch

normalization that can be easily optimized. This fast MaX-DeepLab-S does not only

outperform DETR-R101 [142], but is also around 2x faster. In the slow regime, the standard

MaX-DeepLab-S takes 131 ms with a 1025×1025 input, similar to Panoptic-DeepLab-

X71 [78]. This runtime is also similar to our run of the official DETR-R101 which takes 128

ms on a V100, including 63 ms for box detection and 65 ms for the heavy mask decoding.

C.3 Mask Output Slot Analysis

In this section, we analyze the statistics of all N = 128 mask prediction slots using

MaX-DeepLab-L. In Figure C.3, we visualize the joint distribution of mask slot firings

and the classes they predict. We observe that the mask slots have imbalanced numbers

of predictions and they specialize on ‘thing’ classes and ‘stuff’ classes. Similar to this

Mask-Class joint distribution, we visualize the Mask-Pixel joint distribution by extracting

an average mask for each mask slot, as shown in Figure C.4. Specifically, we resize all

COCO [15] validation set panoptic segmentation results to a unit square and take an
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average of masks that are predicted by each mask slot. We split all mask slots into three

categories according to their total firings and visualize mask slots in each category. We

observe that besides the class-level specialization, our mask slots also specialize on certain

regions of an input image. This observation is similar to DETR [142], but we do not see the

pattern that almost all slots have a mode of predicting large image-wide masks.

C.4 Mask Head Visualization

In Figure 4.5, we visualize how the mask head works by training a MaX-DeepLab with only

D = 3 decoder feature channels (for visualization purpose only). Although this extreme

setting degrades the performance from 45.7% PQ to 37.8% PQ, it enables us to directly

visualize the decoder features as RGB colors. Here in Figure C.5 we show more examples

using this model, together with the corresponding panoptic sementation results. We see a

similar clustering effect of instance colors, which enables our simple mask extraction with

just a matrix multiplication (a.k.a. dynamic convolution [165]–[168]).

C.5 Transformer Attention Visualization

We also visualize the M2P attention that connects the transformer to the CNN. Specifically,

given an input image from COCO validation set, we first select four output masks of

interest from the MaX-DeepLab-L panoptic prediction. Then, we probe the attention

weights between the four masks and all the pixels, in the last dual-path transformer block.

Finally, we colorize the four attention maps with four colors and visualize them in one

figure. This process is repeated for two images and all eight attention heads as shown in

Figure C.6. We omit our results for the first transformer block since it is mostly flat. This

is expected because the memory feature in the first transformer block is unaware of the

pixel-path input image at all. Unlike DETR [142] which focuses on object extreme points

for detecting bounding boxes, our MaX-DeepLab attends to individual object (or stuff)
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masks. This mask-attending property makes MaX-DeepLab relatively robust to nearby

objects with similar bounding boxes or close mass centers.

C.6 More Technical Details

In Figure C.7, Figure C.8, and Figure C.9, we include more details of our MaX-DeepLab

architectures. As marked in the figure, we pretrain our model on ImageNet [8]. The

pretraining model uses only P2P attention (could be a convolutional residual block or an

axial-attention block), without the other three types of attention, the feed-forward network

(FFN), or the memory. We directly pretrain with an average pooling followed by a linear

layer. This pretrained model is used as a backbone for panoptic segmentation, and it uses

the backbone learning rate multiplier we mentioned in Section 4.4. After pretraining the

CNN path, we apply (with random initialization) our proposed memory path, including

the memory, the three types of attention, the FFNs, the decoding layers, and the output

heads for panoptic segmentation. In addition, we employ multi-head attention with 8

heads for all attention operations. In MaX-DeepLab-L, we use shortcuts in the stacked

decoder. Specifically, each decoding stage (resolution) is connected to the nearest two

previous decoding stage outputs of the same resolution.
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Original Image MaX-DeepLab-L Axial-DeepLab [2] DetectoRS [138] DETR [142] Ground Truth

Mask Transformer Box-Free Box-Based Box Transformer
51.1% PQ 43.4% PQ 48.6% PQ 45.1% PQ

Similar to DETR [142], MaX-DeepLab fails typically when there are too many masks to segment in an image. This example contains
more than 200 masks that should be predicted, mostly people and ties.

In this failure case, MaX-DeepLab mistakes the birds for kites in the sky, probably because the birds are too small.

Figure C.2. Failure cases of MaX-DeepLab on the COCO val set.
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Figure C.3. The joint distribution for our N = 128 mask slots and 133 classes with 80

‘thing’ classes on the left and 53 ‘stuff’ classes on the right. We observe that a few mask

slots predict a lot of the masks. Some mask slots are used less frequently, probably only

when there are a lot of objects in one image. Some other slots do not fire at all. In addition,

we see automatic functional segregation between ‘thing’ mask slots and ‘stuff’ mask slots,

with a few exceptions that can predict both thing and stuff masks.
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Mask Slot 71 Mask Slot 106 Mask Slot 125 Mask Slot 69 Mask Slot 116 Mask Slot 4 Mask Slot 27 Mask Slot 103

Most
Firings
(sorted)

Mask Slot 84 Mask Slot 67 Mask Slot 23 Mask Slot 101 Mask Slot 127 Mask Slot 28 Mask Slot 105 Mask Slot 122

Medium
Firings
(sorted)

Mask Slot 25 Mask Slot 66 Mask Slot 98 Mask Slot 110 Mask Slot 63 Mask Slot 95 Mask Slot 40 Mask Slot 79

Few
Firings
(sorted)

Figure C.4. The average masks that each mask slot predicts, normalized by image shape.

Mask slots are categorized by their total number of firings and sorted from most firings to

few firings. We observe spatial clustered patterns, meaning that the mask slots specialize

on certain regions of an input image. For example, the most firing mask slot 71, focusing

on the center of an image, predicts almost all 80 ‘thing’ classes but ignores ‘stuff’ classes

(Figure C.3). The top three categories are tennis rackets, cats, and dogs. The second firing

mask slot 106 segments 14 classes of masks on the bottom of an image, such as road, floor,

or dining-tables. The third firing mask slot 125 concentrates 99.9% on walls or trees that

are usually on the top of an image. The fourth firing mask slot 69 focuses entirely on the

person class and predicts 2663 people in the 5000 validation images.
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Original Image Decoder Feature g Panoptic Seg. Original Image Decoder Feature g Panoptic Seg.

Figure C.5. More visualizations of the decoder feature g with D = 3. Similar to Figure 4.5,

we observe a clustering effect of instance colors, i.e., pixels of the same instance have

similar colors (features) while pixels of different instances have distinct colors. Note that

in this extreme case of D = 3 (that achieves 37.8% PQ), there are not enough colors for all

masks, which causes missing objects or artifacts at object boundaries, but these artifacts do

not present in our normal setting of D = 128 (that achieves 45.7% PQ).
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Original Image Head 1 Head 2 Head 3 Head 4

Panoptic Seg. Head 5 Head 6 Head 7 Head 8

Attention maps for three people (left, middle, right) on a playing field.

Original Image Head 1 Head 2 Head 3 Head 4

Panoptic Seg. Head 5 Head 6 Head 7 Head 8

Attention maps for two people (woman, man) cutting a cake on a table.

Figure C.6. Visualizing the transformer M2P attention maps for selected predicted masks.

We observe that head 2, together with head 5, 7, and 8, mainly attends to the output mask

regions. Head 1, 3, and 4 gather more context from broader regions, such as semantically-

similar instances (scene 1 head 1) or mask boundaries (scene 2 head 4). In addition, we see

that head 6 does not pay much attention to the pixel-path, except for some minor firings

on the playing field and on the table. Instead, it focuses more on M2M self-attention which

shares the same softmax with M2P attention (Equation (4.14)).
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Figure C.7. An example Axial-Block from Axial-DeepLab [2]. This axial-attention bottle-

neck block consists of two axial-attention layers operating along height- and width-axis

sequentially.
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(d) Wide-Bottle block

Figure C.8. Building blocks for our MaX-DeepLab architectures.
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Figure C.9. More detailed MaX-DeepLab architectures. Pretrain labels where we use a clas-

sification head to pretrain our models on ImageNet [8]. (a) A dual-path transformer block

with C intermediate bottleneck channels. (b) The baseline architecture for our ablation

studies in Section 4.4.2. (c) MaX-DeepLab-S that matches the number of parameters and

M-Adds of DETR-R101-Panoptic [142]. Axial-Block (Figure C.7) is an axial-attention bot-

tleneck block borrowed from Axial-DeepLab-L [2]. (d) MaX-DeepLab-L that achieves the

state-of-the-art performance on COCO [15]. Wide-Axial is a wide version of Axial-Block

with doubled intermediate bottleneck channels, similar to the one used in Axial-DeepLab-

XL [2]. (The residual connections are dropped for neatness).

141



Appendix D

CO2: Consistent Contrast for
Unsupervised Visual Representation
Learning

D.1 Implementation Details of Contrastive Pre-Training

We evaluate our approach based on MoCo [173]. MoCo has two different encoders to

encode queries and keys respectively. The query encoder is updated with respect to the loss

function, while the key encoder is an exponential moving average of the query encoder.

The keys are stored in a dynamic memory bank, whose entries are updated at every

training step with the current mini-batch enqueued and the oldest mini-batch dequeued.

The backbone is a standard ResNet-50 [267], and features after the global average pooling

layer are projected to 128-D vectors [169], normalized by ℓ2 norm. The size of the memory

bank (i.e., the number of negative samples) is 65,536 and the momentum to update the key

encoder is 0.999. τins is 0.07 for MoCo variants and 0.2 for MoCo v2 variants, which are the

default settings of these two methods.

We use momentum SGD with momentum 0.9 and weight decay 1e-4. The batch size is

256 on 4 GPUs. To prevent potential information leak with Batch Normalization (BN) [268],

shuffling BN [173] is performed. The model is trained for 200 epochs with the initial
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learning rate of 0.03. The learning rate is multiplied by 0.1 after 120 and 160 epochs for

MoCo v1, while cosine decayed [269] for MoCo v2. We keep aligned all training details

with MoCo except the number of GPUs. This could be problematic since it changes the

per-worker minibatch size, which is related to potential information leaks pointed by [173].

However, we do not notice much difference when reproducing MoCo with 4 GPUs. Our

reproduced MoCo v2 with 4 GPUs reaches the accuracy of 67.6% on the linear classification

protocol, 0.1% higher than 67.5% reported in its paper. For the hyper-parameters of the

proposed consistency term, we set τcons as 0.04 and α as 10 for the MoCo v1-based CO2,

and τcon as 0.05, α as 0.3 for the MoCo v2-based variant.

D.2 Implemetation Details of Downstream Tasks

Linear Classification. We freeze the backbone network including the batch normalization

parameters, and train a linear classifier consisting of a fully-connected layer followed by

softmax on the 2048-D features following the global average pooling layer. We train for 100

epochs. The learning rate is initialized as 15 and decayed by 0.1 every 20 epoch after the

first 60 epochs. We set weight decay as 0 and momentum as 0.9. Only random cropping

with random horizontal flipping is used as data augmentation.

Semi-Supervised Learning. We finetune the pre-trained model for 20 epochs with learning

rate starting from 0.01 for the base model and 1.0 for the randomly initialized classification

head, decayed by 0.2 after 12 and 16 epochs. Momentum is set to 0.9. Weight decay is

5e-4 for MoCo v1 and 1e-4 for MoCo v2. Only random cropping with random horizontal

flipping is used as data augmentation.

Classification on PASCAL VOC. Following the evaluation setup in [209], we train a

linearSVM [210] on the frozen 2048-D features extracted after the global average pooling

layer. The models are trained on trainval2007 split and tested on test2007. The hyper-

parameters are selected based on a held-out subset of the training set.
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Detection on PASCAL VOC. Following the detection benchmark set up in [173], we use

FasterR-CNN [139] object detector and ResNet-50 C4 [211] backbone, implemented in De-

tectron2 [270]. We finetune all the layers including the batch normalization parameters for

24k iterations on the trainval07+12 split and test on test2007 set. The hyper-parameters

are the same as the counterpart with supervised ImageNet initialization and MoCo. To

calibrate the small feature magnitude due to the output normalization in the unsupervised

pre-training stage, two extra batch normalization layers are introduced, one is followed by

the regional proposal head whose gradients are divided by 10 and the other is followed by

the box prediction head.

Segmentation on PASCAL VOC. Following the setup in [173], an FCN-based [271]

architecture with atrous convolutions [272] is used and ResNet-50 is the backbone. The

training set is train_aug2012 [273] and the testing set is val2012. Initialized with CO2

models, we finetune all layers for 50 epochs ( 33k iterations) with batch size 16, initial

learning rate 0.003, weight decay 1e-4 and momentum 0.9.
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Appendix E

iBOT: Image BERT Pre-Training with
Online Tokenizer

E.1 Pseudocode

Algorithm 1 shows the PyTorch-like pseudocode for iBOT w/o multi-crop augmentation.

E.2 Multi-Crop

The advanced performance of several recent state-of-the-art methods [204], [230] relies on

multi-crop augmentation, as well as iBOT. In our early experiments, we find the direct us-

age of multi-crop augmentation leads to instability issues that degrade accuracy. We reveal

that these results can be attributed to the distribution mismatch between masked images

and non-masked images and can be resolved by minimal changes in iBOT framework.

Stability of MIM Pre-Trained with Multi-Crop. We first showcase several practices where

training instability occurs, shown in Figure E.1. To reveal the instability, we monitor the

NMI curves during training for each epoch as shown in Figure E.2. The most intuitive

ideas are to compute as (b) or (c). In (b), MIM is only performed on global crops. This

pipeline is unstable during training, and we observe a dip in the NMI training curve. We

hypothesize that it can be caused by the distribution mismatch of masked global crops
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Algorithm 1: iBOT PyTorch-like Pseudocode w/o multi-crop augmentation

Input:
gs, gt ; // student and teacher network
C, C′ ; // center on [CLS] token and patch tokens
τs, τt ; // temperature on [CLS] token for student and teacher network
τ′

s , τ′
t ; // temperature on patch tokens for student and teacher network

l ; // momentum rate for network
m, m′ ; // momentum rates for center on [CLS] token and patch tokens

gt.params = gs.params

for x in loader do
u, v = augment(x), augment(x) ; // random views

û, mu = blockwise_mask(u) ; // random block-wise masking
v̂, mv = blockwise_mask(v) ; // random block-wise masking

û[CLS]
s , ûpatch

s = gs(û, return_all_tok=true) ; // [n, K], [n, S2, K]

v̂[CLS]
s , v̂patch

s = gs(v̂, return_all_tok=true) ; // [n, K], [n, S2, K]

u[CLS]
t , upatch

t = gt(u, return_all_tok=true) ; // [n, K], [n, S2, K]

v[CLS]
t , vpatch

t = gt(v, return_all_tok=true) ; // [n, K], [n, S2, K]

L[CLS] = H(û[CLS]
s , v[CLS]t , C, τs, τt) / 2 + H(v̂[CLS]

s , u[CLS]
t , C, τs, τt) / 2

LMIM = (mu · H(ûpatch
s , upatch

t , C′, τ′
s , τ′

t ).sum(dim=1) / mu.sum(dim=1) / 2
+ (mv · H(v̂patch

s , vpatch
t , C′, τ′

s , τ′
t ).sum(dim=1) / mv.sum(dim=1) / 2

(L[CLS].mean() +LMIM.mean()).backward()

update(gs) ; // student, teacher and center update
gt.params = l· gt.params +(1 − l)· gs.params
C = m · C + (1 − m)· cat([u[CLS]

t , v[CLS]
t ]).mean(dim=0)

C′ = m′ · C′ + (1 − m′)· cat([upatch
t , vpatch

t ]).mean(dim=(0, 1))
end

def H(s, t, c, τs, τt):
t = t.detach(); // stop gradient
s = softmax(s / τs, dim=1)
t = softmax((t − c) / τt, dim=1); // center + sharpen
return −(t· log(s)).sum(dim=-1);
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Figure E.1. Computation pipelines for iBOT with or without multi-crop augmentation.

(a) iBOT w/o multi-crop augmentation. (b), (c), and (d) are three pipelines w/ multi-crop

augmentation. (b) does not perform MIM for local crops, whereas (c) performs MIM for all

crops. (d) only performs MIM for one of the two global crops. iBOT uses (b) with random

MIM.
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Figure E.2. Training curves of different multi-crop strategy.

Table E.1. k-NN performance of iBOT variants.

ViT-S/16, 100 epochs (a) (b) (c) (d) (e) (b) w/ rand. MIM

k-NN 62.1 62.0 31.9 69.8 56.6 71.5
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and non-masked local crops. To alleviate this, a straightforward solution is to also perform

MIM on local crops with an extra computation cost as (c). However, we do not observe this

circumvents training instability. We hypothesize that the regions corresponding to patch

tokens of the local crops are small in size, in which there exist few meaningful contents

to predict. This hypothesis can be supported by the experiments that when we set the

local crop scale in (c) from (0.05, 0.4) to (0.2, 0.4), denoted as (e), the performance drop is

mitigated (Table E.1).

Stabilizing the Training with Non-Masked Global Crops. Another solution to alleviate

the distribution mismatch between masked global crops and non-masked local crops is to

train with non-masked global crops, as shown in (d). In other words, we perform random

MIM when training ViT with multi-crop augmentation. This computation pipeline is

stable and achieves a substantial performance gain. In practice, to include non-masked

global crops in training, we use (b) and randomly choose a prediction ratio between [0,

r (r > 0)] for each image. When the ratio 0 is chosen, the whole framework excludes MIM

and can be seen as DINO. When the ratio r (r > 0) is chosen, MIM is performed for both

of the two global crops. We observe the latter practice performs sightly better since it is

more flexible in task composition and data in a batch is mutually independent.

Range of Scales in Multi-Crop. In Table E.2, we further study the performance with

different local and global scale. Following DINO [230], we conduct the experiments by

tweaking s, where s is the scale dividing the local and global crops. The local crops are

sampled from (0.05, s) and the global crops are sampled from (s, 1).

Table E.2. Varying multi-crop scale s.

ViT-S/16, 300 epochs 0.25 0.4 0.32

k-NN 74 74.3 74.6

ViT-B/16, 50 epochs 0.25 0.4 0.32

k-NN 70 70.1 70.4

We empirically find that s = 0.32 yields optimal performance for both small-size and

base-size models. Therefore, we use an s of 0.32 by default.
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Table E.3. k-NN and linear probing accuracy on ImageNet-1K without multi-crop

augmentation (left) and with multi-crop augmentation (right) multi-crop augmentation.

We split the table into results without or with multi-crop augmentation.

Method Arch Param. Epo. k-NN Linear

MoCov3
RN50 23 800 - 74.6
ViT-S/16 21 600 - 73.4
ViT-B/16 85 600 - 76.7

DINO ViT-S/16 21 800 70.0 73.7
ViT-B/16 85 400 68.9 72.8

ViT-S/16 21 800 72.4 76.2iBOT ViT-B/16 85 400 71.2 76.0

Method Arch Param. Epo. k-NN Linear

SwAV RN50 23 800 65.7 75.3
ViT-S/16 21 800 66.3 73.5

DINO
RN50 23 800 67.5 75.3
ViT-S/16 21 800 74.5 77.0
ViT-B/16 85 400 76.1 78.2

ViT-S/16 21 800 75.2 77.9iBOT ViT-B/16 85 400 76.8 79.4

State-of-the-Art Comparison w/o and w/ Multi-Crop. Including iBOT, several recent

state-of-the-art works [204], [230] rely heavily on multi-crop augmentation during pre-

training. Except for several specific self-supervised methods [206], multi-crop works well

on most of the self-supervised methods and consistently yields performance gain [230].

While a more fair comparison with our methods without multi-crop augmentation can

be conducted, we believe it is a unique strength of iBOT to work well with multi-crop.

In Table E.3, we categorize the state-of-the-art comparison into two parts where one for

methods without multi-crop and the other with multi-crop. For the former, we mainly

compare our method without multi-crop with MoCov3 [229] and DINO without multi-

crop. We observe that our method achieves state-of-the-art performance with ViT-S/16

even without multi-crop and comparable performance with ViT-B/16 compared with

MoCov3. For the latter, we mainly compare our method with SwAV [204] and DINO with

multi-crop augmentation. We observe that iBOT achieves higher performance with 79.4%

of linear probing accuracy when using ViT-S/16.

Effective Training Epochs. Due to extra computation costs brought by multi-crop aug-

mentation, different methods with the same pre-training epochs actually see different total

numbers of images. To mitigate, we propose to measure the effective training epochs,

defined as actual pre-training epochs multiplied with a scaling factor accounting for extra
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trained images of different resolutions induced by multi-crop augmentation. DINO and

iBOT are by default trained with 2 global crops of size 224 × 224 and 10 local crops of size

96 × 96. Thus r = 2 + ( 96
224)

2 × 10 = 3.84 ≈ 4 for DINO and iBOT. r ≈ 3 for SwAV or

DINO with RN50 as the backbone and pre-trained with 2 global crops and 6 local crops.

r = 2 for contrastive methods without multi-crop augmentation (e.g., MoCo, SimCLR,

BYOL, etc.) and r = 1 for non-contrastive methods (e.g., BEiT, Jigsaw, etc.).

E.3 Additional Implementations

Table E.4. Different fine-tuning recipes.

LD: layerwise learning rate decay. DS:

mixed-precision training with DeepSpeed.

Epo. LD DS BEiT DINO iBOT

ViT-S/16
1 300 1.0 ✗ 81.5 81.1 81.2
2 300 0.75 ✓ 81.7 82.0 82.3
3 200 0.65 ✗ 80.7 - -
4 200 0.75 ✗ 81.4 81.9 82.3
5 200 0.75 ✓ 81.4 82.0 82.2
6 200 0.85 ✗ 81.2 - -

ViT-B/16
7 300 1.0 ✗ 82.1 82.8 82.4
8 200 0.65 ✓ 82.7 83.1 83.2
9 100 0.65 ✗ 83.4 83.5 84.0
10 100 0.65 ✓ 83.2 83.6 83.8

Table E.5. Evaluation protocols for semi-

supervised learning. Proj.: fine-tuning

from the middle layer of the projection

head. LR: logistic regression.

Method Proj. 1% 10%

frozen features
1 DINO + k-NN - 61.3 69.1
2 iBOT + k-NN - 62.3 70.1
3 DINO + Lin. - 60.5 71.0
4 iBOT + Lin. - 62.5 72.2
5 DINO + LR - 64.5 72.2
6 iBOT + LR - 65.9 73.4

end-to-end fine-tuning
7 DINO ✗ 50.6 73.2
8 iBOT ✗ 55.0 74.0
9 DINO ✓ 60.3 74.3
10 iBOT ✓ 61.9 75.1

Fine-Tuning Recipes of Classification on ImageNet-1K. By default, we follow the fine-

tuning protocol in BEiT [234] to use a layer-wise learning rate decay, weight decay and

AdamW optimizer and train small-, base-size models with 200, 100, and 50 epochs re-

spectively. We sweep over four learning rates {8e−4, 9e−4, 1e−3, 2e−3}. Comparatively,
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traditional fine-tuning recipe is to fine-tune the network for 300 epochs with a learning rate

5e−4, no weight decay, and SGD optimizer [227] (row 1 versus 8). For a fair comparison,

we compare the impact of different fine-tuning recipes with different methods, shown in

Table E.4. We empirically find that fine-tuning protocol used in BEiT consistently yields

better fine-tuning results and greatly reduces the training epochs. By default, we use a

layerwise decay of 0.75 with a training epoch of 200 for ViT-S/16, a layerwise decay of 0.65

with a training epoch of 100 for ViT-B/16, and a layerwise decay of 0.75 with a training

epoch of 50 for ViT-L/16. We report the higher results between using or not using DS since

we find it brings different impacts to different methods.

Evaluation Protocols of Semi-Supervised Learning on ImageNet-1K. We study the

impact of different evaluation protocols for semi-supervised learning. Under conventional

semi-supervised evaluation protocol, pre-trained models are end-to-end fine-tuned with

a linear classification head. SimCLRv2 [241] found that keeping the first layer of the

projection head can improve accuracy, especially under the low-shot setting. We fine-tune

the pre-trained model from the first layer of the projection head and verify this conclusion

holds true for Vision Transformers. We empirically find that Vision Transformer performs

better with a frozen backbone with 1% of training data (62.5% in row 4 versus 61.9 % in

row 7). In DINO, a logistic regressor built upon the frozen features is found to perform

better compared with the multi-class linear classifier upon the frozen features, especially

with 1% data (65.9% in row 6 versus 62.5% in row 4). When using 10% data, we empirically

find that end-to-end fine-tuning from the first layer of the projection layer yields the best

performance (75.1% in row 10 versus 73.4% in row 6).

Fine-Tuning Recipes of Object Detection and Instance Segmentation on COCO. For

both small- and base-size models, we utilize multi-scale training (resizing image with

shorter size between 480 and 800 while the longer side no larger than 1333), a learning rate

1e−4, a weight decay of 0.05, and fine-tune the entire network for 1× schedule (12 epochs
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with the learning rate decayed by 10× at epochs 9 and 11). We sweep a layer decay rate

of {0.65, 0.75, 0.8, 0.9}. Note that a layer decay rate of 1.0 denotes no layer is decayed. To

produce hierarchical feature maps, we use the features output from layer 4, 6, 8, and 12,

with 2 deconvolutions, 1 deconvolution, identity mapping, and max-pooling appended

after, respectively. We do not use multi-scale testing.

Fine-Tuning Recipes of Semantic Segmentation on ADE20K. For semantic segmentation,

we follow the configurations in BEiT [234], fine-tuning 160k iterations with 512 × 512

images and a layer decay rate of 0.65. We do not use multi-scale training and testing.

We sweep the learning rate {3e−5, 8e−5, 1e−4, 3e−4, 8e−4}. Similar to object detection and

instance segmentation, to produce hierarchical feature maps, we add additional deconvo-

lution layers after ViT. As shown in Table E.6, when using linear (Lin.) as the task layer, we

Table E.6. Linear probing on ADE20K semantic segmentation with and without the last

LayerNorm [LN].

DINO, w/o [LN] DINO, w/ [LN] iBOT, w/o [LN] iBOT, w/ [LN]

33.7 34.5 37.8 38.3

find that appending the last LayerNorm [LN] for [CLS] token to each patch tokens before

the decoder consistently yields better performance, while we do not spot the substantial

gain when with UperNet as the task layer. By default, we report the segmentation result

with [LN] for both linear head for UperNet head.

Part-Wise Linear Probing. We use the average of the last-layer self-attention map with

[CLS] as the query from multiple heads to rank all the patch tokens. We remove the extra

LayerNorm (LN) after the final block following MoCov3 [229].
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E.4 Additional Results

In this section, we provide detailed results for dense downstream tasks, i.e., object detection,

instance segmentation, and semantic segmentation. We give the complete figures for

occlusion robustness analysis. We also provide extra experiments of nearest neighbor

retrieval, robustness analysis against occlusion and shuffle.

Table E.7. Additional object detection, instance segmentation, and semantic segmenta-

tion results with small-size models. We pre-train iBOT with ViT-S/16 for 800 epochs.

Method Arch. Param. Cascade Mask R-CNN UperNet Seg.

APb APb
50 APb

75 APm APm
50 APm

75 mIoU mAcc

Sup. Swin-T 29 48.1 67.1 52.5 41.7 64.4 45.0 44.5 -
MoBY Swin-T 29 48.1 67.1 52.1 41.5 64.0 44.7 44.1 -

Sup. ViT-S/16 21 46.2 65.9 49.6 40.1 62.9 42.8 44.5 55.5
iBOT ViT-S/16 21 49.4 68.7 53.3 42.6 65.6 45.8 45.4 56.2

Table E.8. Additional object detection, instance segmentation, and semantic segmenta-

tion results with base-size models. We pre-train iBOT with ViT-B/16 for 400 epochs.

Method Cascade Mask R-CNN Linear Seg. UperNet Seg.

APb APb
50 APb

75 APm APm
50 APm

75 mIoU mAcc mIoU mAcc

Sup. 49.8 69.6 53.8 43.2 66.6 46.5 35.4 44.6 46.6 57.0
BEiT 50.1 68.5 54.6 43.5 66.2 47.1 27.4 35.5 45.8 55.9
DINO 50.1 69.5 54.3 43.4 66.8 47.0 34.5 43.7 46.8 57.1
iBOT 51.2 70.8 55.5 44.2 67.8 47.7 38.3 48.0 50.0 60.3

Object Detection, Instance Segmentation, and Semantic Segmentation. We here provide

more detailed results on object detection, instance segmentation, and semantic segmen-

tation with small- and base-size models, shown in Table E.7 and Table E.8 respectively.

Specifically, we include APb
50 and APb

75 for object detection, APm
50 and APm

75 for instance

segmentation, mAcc for semantic segmentation. For object detection (Det.) and instance

segmentation (Inst. Seg.), we consider Cascade Mask R-CNN as the task layer. For seman-
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tic segmentation (Seg.), we consider two evaluation settings where a linear head (Lin.) and

UPerNet are taken as the task layer.

Table E.9. k-NN and linear probing on ImageNet-1K with different pre-training datasets.

Arch. Pre-Train Data Param. Epoch k-NN Linear

ViT-S/16 ImageNet-1K 21 800 75.2 77.9
ViT-S/16 ImageNet-22K 21 160 69.3 76.5
ViT-B/16 ImageNet-1K 85 400 77.1 79.5
ViT-B/16 ImageNet-22K 85 80 71.1 79.0
ViT-L/16 ImageNet-1K 307 300 78.0 81.0
ViT-L/16 ImageNet-22K 307 50 70.6 81.7

k-NN and Linear Probing with ImageNet-22K. We further report k-NN and linear prob-

ing accuracy on ImageNet-1K with models pre-trained on ImageNet-22K dataset. We

empirically observe that ImageNet-1K pre-training incurs better ImageNet-1K k-NN and

linear probing performance, which is opposite to the fine-tuning performance observed in

Table 6.2 and Table 6.3. We hypothesize that the data distribution plays a more crucial rule

under evaluation protocols based on frozen features, such that models pre-trained with

smaller ImageNet-1K dataset consistently achieve better results.

Table E.10. Effectiveness of pre-trained features on nearest neighbor retrieval. We report

the results on different downstream tasks whose evaluation is based on nearest neighbor

retrieval.

Method
Image Retrieval Vid. Obj. Segment.ROx RPar

M H M H (J &F )m Jm Fm

DINO 37.2 13.9 63.1 34.4 61.8 60.2 63.4
iBOT 36.6 13.0 61.5 34.1 61.8 60.4 63.2

Nearest Neighbor Retrieval. Nearest neighbor retrieval is considered using the frozen

pre-trained features following the evaluation protocol as in DINO [230]. DINO has demon-

strated the strong potential of pre-trained ViT features to be directly used for retrieval. To
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validate, DINO designed several downstream tasks, including image retrieval and video

object segmentation, where video object segmentation can be seen as a dense retrieval

task by finding the nearest neighbor between consecutive frames to propagate masks. We

compare iBOT with DINO on these benchmarks with the same evaluation settings. As

demonstrated in Table E.10, iBOT has comparable results with DINO. While iBOT has

higher k-NN results on Imagenet-1K, the performance is not better for iBOT in image

retrieval. We empirically find that the results on image retrieval are sensitive to image

resolution, multi-scale features, etc., and the performance varies using pre-trained models

with minimal differences on hyper-parameter setup. For this reason, we do not further

push iBOT for better results.

Robustness against Background Change. Deep models rely on both foreground objects

and backgrounds. Robust models should be tolerant to background changes and able

to locate discriminative foreground parts. We evaluate this property on ImageNet-9

(IN-9) dataset [274]. IN-9 includes 9 coarse-grained classes and 7 variants by mixing

up the foreground and background from different images. Only-FG (O.F.), Mixed-Same

(M.S.), Mixed-Rand (M.R.), and Mixed-Next (M.N.) are 4 variant datasets where the original

foreground is present but the background is modified, whereas No-FG (N.F.), Only-BG-B

(O.BB.), and Only-BG-T (O.BT.) are 3 variants where the foreground is masked. As shown

in Table 6.8, we observe a performance gain except for O.BT., indicating iBOT’s robustness

against background changes. We note in O.BT. neither foreground nor foreground mask is

visible, contradicting the pre-training objective of MIM.

Robustness against Occlusion. Masked prediction has a natural strength in cases where

parts of the image are masked out since the models are trained to predict their original

contents. We here provide the detailed results of occlusion with different information

loss ratios in Figure E.3 under three dropping settings: random, salient, and non-salient.

We showcase the results of iBOT end-to-end fine-tuned or with a linear head over the
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Figure E.3. Robustness against occlusion. Model’s robustness against occlusion with

different information loss ratios is studied. 3 patch dropping settings: Random Patch

Dropping (left), Salient Patch Dropping (middle), and Non-Salient Patch Dropping (right)

are considered.

pre-trained backbone. We include the results of supervised results with both ViT-S/16 and

ResNet-50 for comparison. ViT shows higher robustness compared to its CNN counterpart,

i.e., ResNet-50, given that Transformers’ dynamic receptive field makes it less dependent

on images’ spatial structure. We empirically find iBOT has stronger robustness against

occlusion compared to its supervised baseline, consolidating that MIM helps to model the

interaction between the sequence of image patches using self-attention such that discarding

proportion of elements does not degrade the performance significantly.
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Figure E.4. Robustness against shuffle. Model’s robustness against shuffle with different

grid shuffle sizes is studied.
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Robustness against Shuffle. We study the model’s sensitivity to the spatial structure by

shuffling on input image patches. Specifically, we shuffle the image patches with different

grid sizes following [250]. We showcase the results of iBOT end-to-end fine-tuned or with

a linear head over the pre-trained backbone. We include the results of supervised results

with both ViT-S/16 and ResNet-50 for comparison. Note that a shuffle grid size of 1 means

no shuffle, and a shuffle grid size of 196 means all patch tokens are shuffled. Figure E.4

suggests that iBOT retain accuracy better than its supervised baseline and ResNet-50. It

also indicates that iBOT relies less on positional embedding to preserve the global image

context for right classification decisions.

E.5 Additional Ablations

In this section, we study the impact of other parameters that we have conducted experi-

ments on. Without extra illustrations, we use 300-epoch pre-trained ViT-S/16, a prediction

ratio r = 0.3 and without multi-crop augmentation for the ablative study.

Table E.11. Different head sharing strategy.

[CLS] patch

A A

[CLS] patch

B B

S T

[CLS] patch

A B

[CLS] patch

C D

S T

[CLS] patch

A B

[CLS] patch

C C

S T

vanilla

shared head

semi-shared head

Table E.12. Hard label versus soft label.

Cen.: centering. †: smaller temperature

for teacher output.

Method Cen. Post Proc. k-NN Linear

✗ softmax 49.8 63.5
✗ hardmax 64.8 71.9
✗ softmax† 69.4 73.9

✓ softmax 67.8 72.9
✓ hardmax 68.1 73.3

iBOT ✓ softmax† 69.1 74.2

DINO - - 67.9 72.5

Architecture of Projection Head. As mentioned earlier, a shared head can transfer the

semantics acquired in [CLS] token to patch tokens, slightly improving the performance.
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We notice that the head for patch tokens in the student network only see the masked

tokens throughout the training, the distribution of which mismatches tokens with natural

textures. Therefore, we conduct an experiment using a non-shared head for the student

network but a shared head for the teacher network denoted as semi-shared head. Their

differences are demonstrated in Figure E.11, where S and T denotes student and teacher

network respectively. The heads with the same index and color denotes they have shared

parameters. † denotes only the first 2 layers out of the 3-layer MLP share the parameters.

Table E.13. Varying iBOT projection head design.

Arch. vanilla shared† sm. shared sm. shared† shared

k-NN . 68.9 68.0 68.4 68.4 69.1
Lin. 73.9 73.7 73.7 73.8 74.2

However, we do not observe that semi-shared head is better than shared head. By default,

we share the entire projection head for [CLS] token and patch tokens.

Comparing MIM with Dense Self-Distillation. To identify the superiority of MIM to

model internal structure using over its alternatives, we conduct experiments performing

self-distillation on original patch tokens along with the [CLS] token. We consider two

matching strategies to construct patch token pairs for self-distillation. Specifically, pos.

Table E.14. Comparing MIM with dense self-distillation.

Arch. DINO DINO + pos. DINO + feat. iBOT

k-NN 67.9 67.1 (−0.8) 68.5 (+0.6) 69.1 (+1.2)
Lin. 72.5 72.5 (+0.0) 73.4 (+0.9) 74.2 (+1.7)

denotes matching according to the absolute position of two views. Similar to [275]. j is

defined as arg minj dist(pi, p′j), where p is the position in the original image space and

dist(u, v) is euclidean distance. The losses are only computed for the overlapped regions of

two views. We do not observe substantial gain brought by matching via patches’ absolute

position. feat. denotes matching according to the similarity of the backbone similarity of
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two views. Similar to [276], we match for each patch token fi the most similar patch token

from another view f ′j , where j = arg maxj sim( fi, f ′j ). sim(u, v) is cosine distance. Such

practice brings a 0.6% performance gain in terms of linear probing accuracy, which is also

observed by a concurrent work, EsViT [240]. Comparatively, iBOT prompts an 1.2% gain

on linear probing, verifying the necessity and advancement of MIM.

Hard Label versus Soft Label. We study the importance of using a continuous token

distribution (softmax†) instead of a discretized id (hardmax) when performing MIM.

Results in Table E.12 indicate continuous tokenization plays a crucial part. We empirically

find the improvement brought by centering, whose roles are less important compared

to centering in self-distillation on [CLS] token. Only sharpening can produce a k-NN

accuracy of 69.4 and a linear probing accuracy of 73.9.

Centering and Sharpening. Different from the [CLS] token, patch tokens do not have

certain semantic cluster and vary more widely from each others. We study the impact

of several critical parameters that decide the distillation process and customize them

for distillation over the patch tokens. Specifically, the smoothing momentum for online

Table E.15. Varying the smoothing momentum for online centering m′ and sharpening

temperature τ′
t for the patch tokens.

m′ .8 .99 .999 .9 .9 .9
τ′

t .04 → .07 .04 → .07 .04 → .07 .04 → .06 .05 → .08 .04 → .07

k-NN 68.7 68.8 68.9 68.5 68.7 69.1
Lin. 74.0 73.8 73.8 73.5 73.9 74.2

centering m′ and sharpening temperature τ′
t are studied. Note we keep the parameters for

[CLS] token the same as DINO and only study for parameters for the patch tokens.

Loss Ratio. We study the impact of different ratio between L[CLS] and LMIM. We keep the

base of L[CLS] to 1 and scale LMIM with different ratios. We observe that directly adding

two losses up without scaling yields the best performance in terms of linear probing
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Table E.16. Varying the loss ratio between L[CLS] and LMIM.

L[CLS] / LMIM 0.5 2 1

k-NN 68.7 69.4 69.1
Lin. 73.8 74.1 74.2

accuracy.

Output Dimension. We follow the structure of projection head in DINO with l2-normalized

bottleneck and without batch normalization. We study the impact of output dimension K

of the last layer. While our method excludes large output dimensionality since each patch

Table E.17. Varying the projection head output dimension.

K 4096 16384 8192

k-NN 68.3 68.8 69.1
Lin. 74.5 74.0 74.2

token has an output distribution, we do not observe substantial performance gain brought

by larger output dimensions. Therefore, we choose K = 8192 by default.
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Prediction Ratios. Masked modeling is based on a formulation of partial prediction, the

objective of which is to maximize the log-likelihood of the target tokens conditioned on

the non-target tokens. We experiment with different prediction ratios for masked image

modeling. The results are shown in Figure E.5. We observe that the performance is not

sensitive to variant prediction ratios between 0.05 and 0.4. Adding a variance upon the

fixed value can also consistently bring a performance gain, which can be explained as

stronger data augmentation. The teacher output of non-masked images is now pulled

together with the student output of masked images with different ratios. By default, we

use 0.3 (±0.2) as the prediction ratio. For models with multi-crop augmentation, following

the above discussions, we randomly choose a prediction of 0 or 0.3 (±0.2) for each image.

Training Epochs. We provide the linear probing top-1 accuracy with ViT-S/16 pre-trained

for different epochs. For comparison, we also include the accuracy curve of other methods

with comparable numbers of parameters, i.e., ResNet-50. From Figure E.6, we observe that

longer training for 800 epochs can improve the model’s performance. It’s noteworthy that

iBOT can achieve a Top-1 accuracy of SwAV [204] pre-trained with 800 epochs in less than

100 epochs. iBOT pre-trained with 800 epochs brings a 0.9% improvement over previous

state-of-the-art method.

Table E.18. Time and Memory Requirements. We detail the actual training time (T)

and GPU memory (Mem.) of different methods, together with their respective linear

probing (Lin.) and fine-tuning (Fin.) accuracy. All methods are trained on two 8-GPU V100

machines with a batch size of 1024.

Method Number of Crops T100 T300 T800 Mem. Lin.300 Lin.800 Fin.800

BEiT 1 × 2242 11.3h 33.7h 90.1h 5.6G 20.7 24.2 81.4
DINO 2 × 2242 15.1h 44.7h 111.6h 9.3G 72.5 73.7 81.6
iBOT 2 × 2242 15.6h 47.0h 126.4h 13.1G 74.8 76.2 82.0
DINO 2 × 2242 + 10 × 962 24.2h 72.6h 180.0h 15.4G 76.2 77.0 82.0
iBOT 2 × 2242 + 10 × 962 24.3h 73.3h 193.4h 19.5G 77.4 77.9 82.3
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Time and Memory Requirements. BEiT is trained with a non-contrastive objective and

without multi-crop augmentation, thus it consumes only a memory of 5.6G and takes

90.1h for 800 epochs. Comparing iBOT and DINO with multi-crop augmentation, iBOT

with MIM induces 25% more memory requirements and 7.4% more actual training time.

Considering pre-training efficiency (accuracy versus time), 800-epochs pre-trained DINO

requiring for 180.0h, while 300-epochs iBOT only requires 73.3h with 0.4% higher linear

probing accuracy (77.0 versus 77.4).

E.6 Alternative Tokenizers

Table E.19. Methodology comparison over different approaches to tokenize the patches.

We report ImageNet-1K k-NN, linear and fine-tuning validation accuracy. Models are

pre-trained with ViT-S/16 and 300 epochs.

Method k-NN Linear Fine-Tune

Rand. - - 79.9
MPP [228] 16.4 37.2 80.8
Patch Clustering 19.2 40.1 81.3
BEiT [234] 6.9 24.2 81.4
Standalone DINO as tokenizer 44.3 60.0 81.7
iBOT 70.3 74.8 81.5

To investigate how different approaches to tokenize the patches affect MIM, we study

several alternatives. In BEiT [234], masked patches are tokenized by a DALL-E encoder.

MPP [228] tokenizes the masked patches using their 3-bit mean color. For Patch Clustering,

we first perform K-Means algorithm to the flattened color vector of each 16 × 16 patch

(d = 768). 10% data of ImageNet-1K training set is sampled and clustered. We set K to 4096.

During pre-training, each patch is tokenized by the index of its closest centroids. Lastly, we

use 300-epoch pre-trained DINO as a standalone tokenizer. Each patch can be tokenized by

the argmax of its output from the pre-trained DINO. We use average pooling to aggregate
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the patch representations. From Table E.19, we see that all methods achieve decent fine-

tuning results compared to the supervised baseline, while only methods tokenized by

semantically meaningful tokenizer have proper results on k-NN and linear classification.

MPP [228] and patch clustering rely purely on offline statistics without the extra stage

of online training. We find patch clustering has slightly better performance in all three

protocols compared to MPP, suggesting the benefits brought by visual semantics. While

BEiT has poor k-NN and linear probing accuracy, a good fine-tuning result also suggests

relatively low requirements for fine-tuning protocol on high-level semantics.

E.7 Visualization

In this section, we first give more visualized pattern layouts and self-attention maps.

Beyond that, we consider an additional task of mining sparse correspondences between

two images and illustrating the superiority of ViTs by showcasing several visualized

results.

E.7.1 Pattern Layout

Pattern Layout for Patch Tokens. To illustrate versatile, interesting behaviors iBOT has

learned, we organize the visualization of pattern layout in two figures. In Figure E.7, we

mainly showcase additional pattern layouts that share high-level semantics. In Figure E.8,

we mainly showcase additional pattern layouts that share low-level details like color,

texture, shape, etc. Top 100 patches with the highest confidence over the validation set are

visualized with a 5 × 5 context around each 16 × 16 patch token (colored orange).

Composing Images with Representative Patterns. In Figure E.9, we visualize 4 patches

with the highest self-attention score (with non-overlapped assigned index) and also show

the pattern layout of that assigned index. The visualized results indicate iBOT can only

be represented by several representative patches, which helps the model’s robustness
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and performance in recognition. This is also validated by our part-wise linear probing

experiments.

Comparison with Other Methods. We visualize pattern layout for patch tokens using

other self-supervised methods [230], [234] in Figure E.10. For BEiT, the DALL-E encoder

generates a discrete number for each patch token. For DINO, we directly use the projection

head for [CLS] token and generate a 65536-d probability distribution for each patch token.

The index with the highest probability is assigned for the token.

Pattern Layout for [CLS] Token. We here also provide additional visualization of semantic

patterns emerge in [CLS] token, which is obtained via self-distillation on cross-view images.

We also observe similar behavior in DINO since it’s not a unique property brought by

MIM. In fact, semantics are now believed to emerge as long as a similarity between two

distorted views of one image is enforced [173], [204], [206], [254].

E.7.2 Self-Attention Visualizations

Similar to the setting of Section 6.4.3, we here provided more self-attention map visualiza-

tion from multiple heads of the last layer in Figure E.12.

E.7.3 Sparse Correspondence.

We consider a sparse correspondence task where the overlapped patches from two aug-

mented views of one image, or patches from two images labeled as one class, are required

to be matched. The correlation is sparse since at most 14 × 14 matched pairs can be

extracted with a ViT-S/16 model. We visualize 12 correspondences with the highest self-

attention score extracted from iBOT with ViT-S/16 pre-trained for 800 epochs. The score is

averaged between multiple heads of the last layer. Several sampled sets of image pairs are

shown in Figure E.13. We observe empirically that iBOT perform well for two views drawn

from one image, nearly matched the majority of correspondence correctly. In the second
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column, iBOT can match different parts of two instances from the same class (e.g., tiles and

windows of two cars) despite their huge differences in texture or color. We observe the

DINO also has comparable visualized effects, illustrating the representation pre-trained

with self-distillation also suits well for retrieval in a patch-level scale.
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Figure E.7. Visualization for pattern layout of patch tokens that share high-level seman-

tics. In the first row, we visualize different human-related semantic parts. We observe

patterns for human hair, human shoulder & arm, and human elbow respectively. In other rows

of the figure, we show semantic parts related to animals (dog’s ear, dog’s nose, bird’s wing,

dragonfly’s wing), outdoor scenes (front window of the vehicle, window of the architecture) and

indoor objects (ceiling, glass bottle).
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Figure E.8. Visualization for pattern layout of patch tokens that share low-level patterns.

In the first two rows, we visualize patches that share similar textures. In the third row, we

show some shape-related patterns, such as those of lines and similar curvatures. We also

notice that some tokens capture color information, as shown in the last row.
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Samoyed

2

1

3

0

0 | 7407 1 | 496

2 | 857 3 | 7781

Library

3 0

1 2

0 | 1211 1 | 1513

2 | 7123 3 | 8181

Figure E.9. Top-4 representative patches with each of their pattern layout. Order index 0,

1, 2, 3 are ranked according to its self-attention score. In the top-left corner for each pattern

layout subfigure, its order index and cluster index are annotated. In the top panel, we can

observe that pattern 0,2,3 show explicit semantic information of nose, eyes, ears respectively.

Interestingly, patch 1 also locates around the eyes of the Samoyed but its corresponding

pattern share visual similarity in shape instead of semantics. This illustrates the diverse

behavior for each learned pattern. In the bottom panel, a library is represented by 0 two-

or multi-color joints, 1,3 knurlling texture, 2 texts. Similarly, we have patterns 0,1,3 focusing

more on texture & color and pattern 2 focusing more on semantics. All of these visualized

results illustrate versatile behavior for each index.
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DINO

BEiT

Figure E.10. Visualization for pattern layout of patch tokens using BEiT (top) and DINO

(bottom). In the layout extracted from the DALL-E encoder, we observe minimal semantic

patterns. In most cases, patches with similar color (e.g., black area in left figure) or texture

(e.g., line in right figure) are clustered. In the layout extracted from DINO, while more

complex textures are visible, most patches share similar local details instead of high-level

semantics. In the right figure, the semantic part eyes can be somehow observed, yet it is

mixed with plenty of irrelevant semantic parts.
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Figure E.11. Visualization for pattern layout of [CLS] token. We here indicate the high

quality of semantic layout brought by self-distillation of cross-view images on [CLS] token.

This property is not brought by MIM and is also prominent in DINO.
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DINO iBOT

iBOT

Figure E.12. Visualization for self-attention map from Multiple Heads. In the first 8

columns, we showcase iBOT’s attention map along with DINO’s. In the last 10 columns, we

showcase more attention map from iBOT. We indicate that iBOT shows visually stronger

ability to separate different objects or different parts of one object apart by giving more

attentive visualized results for each part, compared with DINO. For example, in the fifth

column, there is an attention head in iBOT accounting for the ear of the fox solely, while in

DINO, it emerges with other parts; In the eighth column, iBOT separates the mushroom

into more semantically meaningful parts.
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Correspondence between two views of one image

Correspondence between two images of one class

Figure E.13. Visualization for sparse correspondence. The top panel shows images pairs

sampled from two views of one image. The extracted correspondence from iBOT is mostly

correct despite augmentations on scale and color. The bottom panel shows image pairs

sampled from two images of the same class. For example, the second row shows animal

images, and we observe that iBOT matches the semantic parts of animals correctly (e.g.,

tails of the fox, beak of the bird). These results demonstrate the capability of iBOT in part

retrieval or matching in a local scale.
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